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Assignment #4
Math Trek: Dilithium? No, dilogarithm!
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The dilogarithm function, Li2(x), is usually defined as the sum of an infinite series:
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To answer the questions below you will probably want to review the basic information on
convergence of series from your first-year calculus text, especially the (simplest forms of
the) Comparison Test and the Integral Test.

1. Show that the series defining Li2(x) converges for all x with −1 ≤ x ≤ 1. [3]

2. How is the dilogarithm function related to the natural logarithm function? [3]

3. Denote the kth remainder term at 0 of the dilogarithm function by:
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Show that for any ε > 0 there is an K > 0 such that for any k ≥ K, |Rk,0(x)| < ε for
all x with −1 ≤ x ≤ 1. [4]


