Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
Trent University, Fall 2008
Assignment \#4
Math Trek: Dilithium? No, dilogarithm!
Due: Friday, 7 November, 2008

The dilogarithm function, $\operatorname{Li}_{2}(x)$, is usually defined as the sum of an infinite series:

$$
\operatorname{Li}_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}=x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\frac{x^{4}}{16}+\ldots
$$

To answer the questions below you will probably want to review the basic information on convergence of series from your first-year calculus text, especially the (simplest forms of the) Comparison Test and the Integral Test.

1. Show that the series defining $\operatorname{Li}_{2}(x)$ converges for all x with $-1 \leq x \leq 1$. [3]
2. How is the dilogarithm function related to the natural logarithm function? [3]
3. Denote the k th remainder term at 0 of the dilogarithm function by:

$$
R_{k, 0}(x)=\operatorname{Li}_{2}(x)-\sum_{n=1}^{k} \frac{x^{n}}{n^{2}}=\operatorname{Li}_{2}(x)-\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\cdots+\frac{x^{k}}{k^{2}}\right)
$$

Show that for any $\varepsilon>0$ there is an $K>0$ such that for any $k \geq K,\left|R_{k, 0}(x)\right|<\varepsilon$ for all x with $-1 \leq x \leq 1$. [4]

