Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Fall 2008

Assignment #3

Eeeeeeeeeeeeee! Due: Friday, 17 October, 2008

Recall that the Taylor series at 0 of e^x is $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Let $R_{n,0}(x)$ denote the *n*th remainder term at 0, *i.e.*

$$R_{n,0}(x) = e^x - \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right)$$
$$= e^x - 1 - \frac{x}{1!} - \frac{x^2}{2!} - \dots - \frac{x^n}{n!}.$$

- **1.** Use the integral form of the remainder for a Taylor series (see Assignment #2) to show that for x > 0, $0 < R_{n,0}(x) \le \frac{e^x x^{n+1}}{(n+1)!}$. [2]
- **2.** Use your estimate for $R_{n,0}(x)$ in **1** to show that $0 < R_{n,0}(1) < \frac{3}{(n+1)!}$. [1]
- **3.** Show that e is irrational. [7]
 - *Hint:* Assume by way of contradiction that $e = \frac{a}{b}$, where a and b are positive integers. Choose an n such that n > 3 and n > b, and use the fact that

$$\frac{a}{b} = e = e^{1} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + R_{n,0}(1)$$

to show that $n!R_{n,0}(1)$ must be an integer. Then use **2** to show that it cannot be an integer.