Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2008

Assignment \#3

Eeeeeeeeeeeeeeeeee!

Due: Friday, 17 October, 2008
Recall that the Taylor series at 0 of e^{x} is $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$. Let $R_{n, 0}(x)$ denote the nth remainder term at 0 , i.e.

$$
\begin{aligned}
R_{n, 0}(x) & =e^{x}-\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}\right) \\
& =e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}
\end{aligned}
$$

1. Use the integral form of the remainder for a Taylor series (see Assignment \#2) to show that for $x>0,0<R_{n, 0}(x) \leq \frac{e^{x} x^{n+1}}{(n+1)!}$. [2]
2. Use your estimate for $R_{n, 0}(x)$ in $\mathbf{1}$ to show that $0<R_{n, 0}(1)<\frac{3}{(n+1)!}$. [1]
3. Show that e is irrational. [7]

Hint: Assume by way of contradiction that $e=\frac{a}{b}$, where a and b are positive integers. Choose an n such that $n>3$ and $n>b$, and use the fact that

$$
\frac{a}{b}=e=e^{1}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+R_{n, 0}(1)
$$

to show that $n!R_{n, 0}(1)$ must be an integer. Then use $\mathbf{2}$ to show that it cannot be an integer.

