Mathematics 3790H - Analysis I: Introduction to analysis

Trent University, Fall 2008
Assignment \#2
The integral form of the remainder of a Taylor series
Due: Wednesday, 8 October, 2008
In what follows, let us suppose that a is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and all values of x we may encounter. Recall that for $n \geq 0$, the Taylor polynomial of degree n of $f(x)$ at a is

$$
\begin{aligned}
T_{n, a}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

and that the corresponding remainder term is

$$
R_{n, a}(x)=f(x)-T_{n, a}(x) .
$$

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0, a}(x)=\int_{a}^{x} f^{\prime}(t) d t
$$

2. Use the formula in $\mathbf{1}$ and integration by parts to show that

$$
R_{1, a}(x)=\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
$$

Hint: Use the parts $u=f^{\prime}(t)$ and $v=t-x \ldots$
3. Use the formula in 2 and integration by parts to show that

$$
R_{2, a}(x)=\int_{a}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t
$$

4. Find an integral formula for $R_{n, a}$ and use induction to show that it works. [5]
