Mathematics 3770H - Complex Analysis

Trent University, Winter 2024

Assignment \#1

A Little Matrix Algebra Warm-Up
Due* just before midnight on Friday, 19 January.
Recall that the complex numbers are basically the real numbers with a square root for -1 , usually denoted by i, thrown in and then closed up under the usual arithmetic operations of addition and multiplication. A little more formally, the set of complex numbers is

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\},
$$

with + and \cdot defined by

$$
\begin{gathered}
\quad(a+b i)+(c+d i)=(a+c)+(b+d) i \\
\text { and }(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i .
\end{gathered}
$$

Note that his definition of multuplication gives us $i^{2}=(0+1 i)^{2}=-1+0 i=-1$. Also, note that $\mathbb{R}=\{a+b i \in \mathbb{C} \mid b=0\}$ is a subset of \mathbb{C}.

Let $\mathbf{M}_{2}(\mathbb{R})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ be the set of 2×2 matrices with entries from the real numbers, and let $\mathbf{O}_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ be the 2×2 zero and identity matrices, respectively, in $\mathbf{M}_{2}(\mathbb{R})$.

There is a copy of \mathbb{C} in $\mathbf{M}_{2}(\mathbb{R})$:

1. Find a matrix $\mathbf{T} \in \mathbf{M}_{2}(\mathbb{R})$ such that $\mathbf{T}^{2}=-\mathbf{I}_{2}$. [1]

Given a matrix \mathbf{T} such that $\mathbf{T}^{2}=-\mathbf{I}_{2}$, we can define a function $\varphi: \mathbb{C} \rightarrow \mathbf{M}_{2}(\mathbb{R})$ by $\varphi(a+b i)=a \mathbf{I}_{2}+b \mathbf{T}$.
2. Show that the function $\varphi: \mathbb{C} \rightarrow \mathbf{M}_{2}(\mathbb{R})$ is $1-1$, and preserves both addition and multiplication,. (That is, for all $z, w \in \mathbb{C}$, we have $\varphi(z+w)=\varphi(z)+\varphi(w)$ and $\varphi(z \cdot w)=\varphi(z) \cdot \varphi(w)$.) [6]

The next step beyond the complex numbers are the quaternions, usually denoted by \mathbb{H}. They were invented/discovered in 1843 by William Rowan Hamilton (1805-1865), who used them to do things we mostly do with cross-products nowadays. To make the quaternions, you throw three different square roots of -1 - usually denoted by i, j, and k - into the real numbers which have a non-commutative mutliplication among themselves. To be precise, we have:

$$
\begin{array}{ccc}
i^{2}=-1 & j^{2}=-1 & k^{2}=-1 \\
i j=k & j k=i & k i=j \\
j i=-k & k j=-i & i k=-j
\end{array}
$$

[^0]Let $\mathbf{M}_{2}(\mathbb{C})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{C}\right\}$ be the set of 2×2 matrices with entries from the complex numbers. As in $\mathbf{M}_{2}(\mathbb{R})$, let $\mathbf{O}_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ be the 2×2 zero and identity matrices, respectively, in $\mathbf{M}_{2}(\mathbb{C})$.
3. Find matrices $\mathbf{U}, \mathbf{V}, \mathbf{W} \in \mathbf{M}_{2}(\mathbb{C})$ such that:

$$
\begin{array}{ccc}
\mathbf{U}^{2}=-\mathbf{I}_{2} & \mathbf{V}^{2}=-\mathbf{I}_{2} & \mathbf{W}^{2}=-\mathbf{I}_{2} \\
\mathbf{U V}=\mathbf{W} & \mathbf{V W}=\mathbf{U} & \mathbf{W} \mathbf{U}=\mathbf{V} \\
\mathbf{V U}=-\mathbf{W} & \mathbf{W V}=-\mathbf{U} & \mathbf{U W}=-\mathbf{V}
\end{array}
$$

One could go on to use these matrices to show that there is a copy of the quaternions in $\mathbf{M}_{2}(\mathbb{C})$, but we'll save that as a possibility for another day. :-)

[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

