## Mathematics 3260H - Geometry II: Projective and non-Euclidean geometry Trent University, Winter 2015

Assignment $\# 13=8+5^{*}$
Free Completion
Due on Thursday, 5 March, 2015.
Suppose $\mathcal{C}_{0}=\left(\mathcal{P}_{0}, \mathcal{L}_{0}, I_{0}\right)$ is a configuration consisting of a set of points, $\mathcal{P}_{0}$, a set of lines, $\mathcal{L}_{0}$, and a relation of incidence, $I_{0}$, specifying which points are incident with which lines. For each $n \geq 0$, given the configuration $\mathcal{C}_{n}=\left(\mathcal{P}_{n}, \mathcal{L}_{n}, I_{n}\right)$, define the configuration $\mathcal{C}_{n+1}=\left(\mathcal{P}_{n+1}, \mathcal{L}_{n+1}, I_{n+1}\right)$ as follows:

- $\mathcal{P}_{n+1}$ includes all the points of $\mathcal{P}_{n}$, together with a new and distinct point of intersection for every pair of lines in $\mathcal{L}_{n}$ which do not already have a common point of intersection in $\mathcal{C}_{n}$.
- $\mathcal{L}_{n+1}$ includes all the lines of $\mathcal{L}_{n}$, together with a new and distinct line joining each pair of points in $\mathcal{P}_{n}$ which do not already have a line joining them in $\mathcal{C}_{n}$.
- $I_{n+1}$ is $I_{n}$, plus the incidences involving the added points and lines described above.

Finally, let $\mathcal{P}=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}, \mathcal{L}=\bigcup_{n=0}^{\infty} \mathcal{L}_{n}$, and $I=\bigcup_{n=0}^{\infty} I_{n}$. The incidence structure $\mathcal{C}=(\mathcal{P}, \mathcal{L}, I)$ is the free completion of the configuration $\mathcal{C}_{0}=\left(\mathcal{P}_{0}, \mathcal{L}_{0}, I_{0}\right)$.

1. Show that the free completion of an arbitrary (non-empty) configuration must satisfy axioms I and II for a projective plane. [5]
2. Give an example of a (non-empty) configuration whose free completion is not a projective plane. [1]
3. Assume $\mathcal{C}_{0}$ consists of four points and no lines. Show that the free completion $\mathcal{C}$ of $\mathcal{C}_{0}$ is a projective plane. [4]
[^0]
[^0]:    * Toby ...

