Mathematics 326H – Geometry II: Projective and non-Euclidean geometries TRENT UNIVERSITY, Winter 2007

Problem Set #6

Due on Thursday, 5 April, 2007.

Free completion

In this problem set we consider a standard method for constructing projective planes:

Suppose $C_0 = (\mathcal{P}_0, \mathcal{L}_0, I_0)$ is a configuration consisting of a set of points, \mathcal{P}_0 , a set of lines, \mathcal{L}_0 , and a relation of incidence, I_0 , specifying which points are incident with which lines. For each $n \ge 0$, given the configuration $C_n = (\mathcal{P}_n, \mathcal{L}_n, I_n)$, define the configuration $C_{n+1} = (\mathcal{P}_{n+1}, \mathcal{L}_{n+1}, I_{n+1})$ as follows:

- \mathcal{P}_{n+1} includes all the points of \mathcal{P}_n , together with a new and distinct point of intersection for every pair of lines in \mathcal{L}_n which do not already have a common point of intersection in \mathcal{C}_n .
- \mathcal{L}_{n+1} includes all the lines of \mathcal{L}_n , together with a new and distinct line joining each pair of points in \mathcal{P}_n which do not already have a line joining them in \mathcal{C}_n .
- I_{n+1} is I_n , plus the incidences involving the added points and lines described above.

Finally, let $\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$, $\mathcal{L} = \bigcup_{n=0}^{\infty} \mathcal{L}_n$, and $I = \bigcup_{n=0}^{\infty} I_n$. The incidence structure $\mathcal{C} = (\mathcal{P}, \mathcal{L}, I)$ is the *free completion* of the configuration $\mathcal{C}_0 = (\mathcal{P}_0, \mathcal{L}_0, I_0)$.

- 1. Show that the free completion of an arbitrary (non-empty) configuration must satisfy axioms I and II for a projective plane. [5]
- 2. Give an example of a (non-empty) configuration whose free completion is *not* a projective plane. [1]
- **3.** Assume C_0 consists of four points and no lines. Show that the free completion C of C_0 is a projective plane. [4]