Mathematics 326H - Geometry II: Projective and non-Euclidean geometries

 Trent University, Winter 2007Problem Set \#3
Due on Tuesday, 27 February, 2007.

1. Show that for any pair of parallel lines in the Poincaré model there is an unique line perpendicular to both. [5]

The Max-imum pain - er, plain - er, plane

Let Max be the geometric structure defined with reference to the surface in threedimensional Cartesian space given by $z^{2}=x^{2}+y^{2}+1$ and $z>0\left(\right.$ i.e. $\left.z=\sqrt{x^{2}+y^{2}+1}\right)$ as follows.

- Points of Max are the points of the surface.
- Lines of Max are the curves in which the surface intersects (some of) the Cartesian planes through the origin.
- The distance in Max between two points $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ of MAX is given by the formula:

$$
d(\mathbf{a}, \mathbf{b})=\operatorname{arccosh}\left(a_{3} b_{3}-a_{1} b_{1}-a_{2} b_{2}\right)
$$

(You may assume that distances between points of Max are positive and have the usual basic properties distance functions ought to.)

- The angle φ in Max between the lines of Max obtained by intersecting the surface with the Cartesian planes $a x+b y+c z=0$ and $p x+q y+r z=0$ is given by the formula:

$$
\varphi=\arccos \left(\frac{c r-a p-b q}{\sqrt{c^{2}-a^{2}-b^{2}} \cdot \sqrt{r^{2}-p^{2}-q^{2}}}\right)
$$

(You may assume that this formula makes sense whenever two lines of Max intersect.)
2. Determine which among Euclid's Postulates I-IV and the "multiple parallels" counterpart of Playfair's Axiom hold in Max. [10]

