Mathematics 326H - Geometry II: Projective and non-Euclidean geometries

 Trent University, Winter 2007Problem Set \#1
Due on Thursday, 26 January, 200%.

1. \mathbb{Z}_{2} is the number system with 0 and 1 as its only elements, and with addition and multiplication done modulo 2 . (\mathbb{Z}_{2} 's arithmetic is normal except that $1+1=0 \ldots$) \mathbb{Z}_{2}^{2} is the counterpart of the Cartesian plane \mathbb{R}^{2}, constructed in the same way, apart from using \mathbb{Z}_{2} instead of \mathbb{R}.
a. How many points and lines, respectively, are there in \mathbb{Z}_{2}^{2} ? [1]
b. Which of Euclid's postulates make sense and are true, respectively, in \mathbb{Z}_{2}^{2} ? [5]
2. The axioms for a projective plane are:
I. Any two distinct points are incident with exactly one common line.
II. Any two distinct lines are incident with exactly one common point.
III. There are four disctinct points such that no three are incident with a common line.

Give examples of structures to demonstrate that these three axioms are mutually consistent and also independent of one another. [8]
3. There are three more-or-less common definitions of what "parallel" means:
i. Two lines are parallel if they never meet.
ii. Two lines are parallel if the distance between them is constant.
iii. Two lines are parallel if corresponding angles are the same when the two lines are crossed by a third line.
Give (informal!) arguments to show that these definitions are equivalent in Euclidean geometry. [6]

