Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry Trent University, Fall 2021
 Assignment \#9
 Linear Ternary Rings
 Due on Friday, 19 November.
 May be submitted on paper or via Blackboard.*

Recall that once we reverse-engineer (extended affine) coordinates in projective plane, we can define a ternary operation $T(m, x, b)$ on our set of coordinate symbols R, which must include the special symbols 0 and 1 , by having $y=T(m, x, b) \Longleftrightarrow(x, y) \mathbf{I}[m, b]$. This operation must satisfy the following conditions:

1. For all $x, b \in R, T(x, 0, b)=T(0, x, b)=b$.
2. For all $x \in R, T(1, x, 0)=T(x, 1,0)=x$.
3. For all $x, y, u, v \in R$, there are unique $m, b \in R$ such that $y=T(m, x, b)$ and $v=T(m, u, b)$.
4. For all $x, y, m \in R$, there is an unique $b \in R$ such that $y=T(m, x, b)$.
5. For all $m, b, n, c \in R$ with $m \neq n$, there is an unique $x \in R$ such that $T(m, x, b)=$ $T(n, x, c)$.
A set of symbols R including 0 and 1 , together with a ternary operation $T: R^{3} \rightarrow R$ satisfying conditions $1-5$ above, is said to be a (planar) ternary ring.

One can also go the other way: given a ternary ring (R, T) one can construct an affine plane by taking the set of points to be $R^{2}=\{(x, y) \mid x, y \in R\}$ and the set of lines to be $\{[m . b] \mid m, b \in R\} \cup\{[a] \mid a \in R\}$, with incidence given by $(x, y) \mathbf{I}[m, b] \Longleftrightarrow y=$ $T(m, x, b)$ and $(x, y) \mathbf{I}[a] \Longleftrightarrow x=a$. Of course, the affine plane constructed from a ternary ring as above can be extended to a projective plane in the usual way by adding a line at infinity and extending the coordinate system accordingly.

Recall also that, given a ternary ring (R, T), we can define addition and multiplication on R by $a+b=T(1, a, b)$ and $a \cdot b=T(a, b, 0)$, and we say that a ternary ring is linear if $T(m, x, b)=(m \cdot x)+b=T(1, T(m, x, 0), b)$ for all $m, x, b \in R$. We showed in class that if the following narrow version of Desargues' Theorem held after setting up extended affine coordinates,

Suppose that whenever triangles $A B C$ and $D E F$ satisfy the conditions that
i. $A B C$ and $D E F$ are in perspective from (∞),
ii. A and D are incident with [0],
iii. $A B \cap D E$ and $A C \cap D F$ are both incident with [∞], and
iv. $B C$ is incident with (0),
then we also have that
v. $D E$ is incident with (0).
then the corresponding ternary ring is linear.
Do one (1) of the following problems.

1. Suppose (R, T) is a ternary ring. Show that the affine plane defined from it as above is indeed an affine plane. [10]
2. Show that if (R, T) is a linear ternary ring, then the restricted version of Desargues' Theorem given above holds in the projective plane coordinatized by (R, T). [10]
[^0]
[^0]: * All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca

