Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry
 Trent University, Fall 2021
 Assignment \#5
 Not an affine plane...
 Due on Friday, 15 October.
 May be submitted on paper or via Blackboard.*

This assignment is a follow-up of sorts to Assignment \#4.
\mathbb{Z}_{4} is the algebraic structure (it's a ring, if you want to be technical) of the integers $\bmod 4$. That is, \mathbb{Z}_{4} has four elements, $0,1,2$, and 3 , and the operations of + and . "roll over" when they reach 4 like a clock with four hours. (Thus $4=0 \bmod 4,5=1 \bmod 4$, and so on.) To be completely explicit, the operations of + and \cdot in \mathbb{Z}_{4} are given by the following tables:

+	0	1	2	3	.	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

We can use \mathbb{Z}_{4} as the basis for a two-dimensional system of Cartesian-style coordinates, denoting the resulting geometry by \mathbb{Z}_{4}^{2}. Points are given by their coordinates and lines are given by equations of the form $x=a$ and $y=m x+b$. (Of course, we are restricted to using the elements and operations of \mathbb{Z}_{4}.) This gives a geometry that isn't an affine plane, as you will show.

1. Draw the "plane" \mathbb{Z}_{4}^{2}. [5]
2. Explain why \mathbb{Z}_{4}^{2} is not an affine plane. List as many reasons why it isn't as you can find. [5]
[^0]
[^0]: * All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca

