Mathematics 3260H – Geometry II: Projective and Non-Euclidean Geometry TRENT UNIVERSITY, Fall 2021

Assignment #5 Not an affine plane ... Due on Friday, 15 October. May be submitted on paper or via Blackboard.*

This assignment is a follow-up of sorts to Assignment #4.

 \mathbb{Z}_4 is the algebraic structure (it's a ring, if you want to be technical) of the integers mod 4. That is, \mathbb{Z}_4 has four elements, 0, 1, 2, and 3, and the operations of + and \cdot "roll over" when they reach 4 like a clock with four hours. (Thus $4 = 0 \mod 4$, $5 = 1 \mod 4$, and so on.) To be completely explicit, the operations of + and \cdot in \mathbb{Z}_4 are given by the following tables:

+	0	1	2	3	•	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

We can use \mathbb{Z}_4 as the basis for a two-dimensional system of Cartesian-style coordinates, denoting the resulting geometry by \mathbb{Z}_4^2 . Points are given by their coordinates and lines are given by equations of the form x = a and y = mx + b. (Of course, we are restricted to using the elements and operations of \mathbb{Z}_4 .) This gives a geometry that isn't an affine plane, as you will show.

- 1. Draw the "plane" \mathbb{Z}_4^2 . [5]
- 2. Explain why \mathbb{Z}_4^2 is not an affine plane. List as many reasons why it isn't as you can find. [5]

^{*} All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca