Mathematics 3260H – Geometry II: Projective and Non-Euclidean Geometry TRENT UNIVERSITY, Fall 2021

Assignment #2 The Moulton Plane

Due on Friday, 1 October. May be submitted on paper or via Blackboard.*

Recall from class that an affine plane is a geometry consisting of a set of points and lines satisfying the following axioms:

AI. Any two distinct points are connected by an unique line.

AII. Given a line ℓ and a point P not on ℓ , there is an unique line m through P that has no points in common with ℓ .

AIII. There exist three points that are not all on the same line.

The *Moulton plane*^{\dagger} is the affine plane obtained from the Cartesian plane by replacing straight lines with negative slope by lines which bend to double the slope as they cross the *y*-axis from left to right.

More formally:

- The points of the Moulton plane are the points of the Cartesian plane \mathbb{R}^2 .
- The lines of the Moulton plane are:
 - The vertical lines of the Cartesian plane, *i.e.* x = c for each $c \in \mathbb{R}$.
 - The lines of non-negative slope of the Cartesian plane, *i.e.* y = mx + b for $m, b \in \mathbb{R}$ with $m \ge 0$.

• The bent lines given by
$$y = \begin{cases} mx+b & x \leq 0\\ 2mx+b & x \geq 0 \end{cases}$$
 for $m, b \in \mathbb{R}$ with $m \leq 0$.

- A point is on a line of the Moulton plane exactly when its Cartesian coordinates satisfy the equation of the line.
- 1. Verify that the Moulton plane is indeed an affine plane. [10]

^{*} All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca

[†] Named after the astronomer (!) who devised this example, Forest Ray Moulton (1872–1952). In mathematics, Moulton is also known for the Adams-Moulton methods for computing numerical solutions to differential equations.