Mathematics 3260H - Geometry II: Projective and non-Euclidean geometry

 Trent University, Fall 2021
Assignment \#11

Saccheri Quadrilaterals
Due on Friday, 3 December.

A Saccheri quadrilateral is a quadrilateral $A B C D$ in which sides $A B$ and $C D$ are perpendicular to the base $B C$, with A and D on the same side of $B C$, and with $A B=C D$ (i.e. $A B$ and $C D$ have the same length).

1. Use Euclid's Postulates I-IV (augmented by Postulates A and S, if you need them) to show that $\angle B A D=\angle C D A$. [4]
2. Suppose that in our Saccheri quadrilateral we have $A B=B C=C D=1$. Show that:
a. $A D<1$ if the quadrilateral is drawn in the elliptic plane. [2]
b. $A D=1$ if the quadrilateral is drawn in the Euclidean plane. [2]
c. $A D>1$ if the quadrilateral is drawn in the hyperbolic plane. [2]

Note: Giovanni Saccheri (1667-1733) was a Jesuit priest who did work in theology, philosophy, and mathematics. He is best remembered nowadays for his work Euclides ab omni naevo vindicatus ("Euclid cleared of every flaw"), published shortly before he died. In this book he attempted to show that Euclid's Postulate V followed from Postulates I-IV by obtaining a contradiction from assuming Postulates I-IV and denying Postulate V. He succeeded in showing that denying Postulate V by assuming that there are no parallel lines led to a contradiction, but his argument that denying the Postulate by assuming that there were many lines through a given point parallel to a given line was flawed. However, he proved many theorems of what is now known as hyperbolic geometry along the way.

