Today, Working up to Legendre's Theorems related to Post. V.

First,

<u>Prop:</u> Postulate V <=> the sum of the interior angles of a triangle is Tr.

I (=> x+B+8=7

Proof: =>

·Assume Post. I

*By Post. I there is an unique line through A parallel to BC *By the Z-theorem (I-29), $\angle DAB = B$ and $\angle EAC = X$. Thus $\angle DAE = T = B + \alpha + X$.

- ·Assume that for any triangle $\propto +B+X=T$
- · [TO Show: Post I']
- · Pick B and C on the given line and make AABC
- Pick D such that $\angle DAC' = X$ and E such that $\angle EAB = \beta$
- · E, A, D are collinear because ZEAD = \$ + & + X = 7
- · We need to Show it is parallel to BC.
- · By the Z-theorem (I-28) Since LEAB= LABC, EA is parallel to BC.
- ·Why is ED the <u>unique</u> line through A parallel to BC?
- Suppose another line through A passes between D and C. Pick a point F on this line (on the same side of BC as D is)
- · Draw a line through F, intersecting AC at a point G S.t. LAGF = x + B
- · Then by the Z-theorem (I-28), GF is parallel to BC.
- · Scale 1/1967 by <u>IACL</u> ... and place the scaled version with AG on AC
- ·Then GF lies along BC and so AF meets BC at the new scaled F

<u>Legendre'S First Theorem</u>

Assume Postulate I- IV (and S and A and ...) hold, then the sum of the interior angles of a triangle cannot exceed two right angles.

[The elliptic plane is impossible with an unmodified Post. II.]

Proof:

·Assume by way of contradiction that $\triangle ABC$ has $x+\beta+x>T$

 $\alpha+\beta+\delta=\pi<\alpha+\beta+\gamma=>\delta<\gamma$ So, ICDI<IABI