Back to Showing the & We defined preserves incidence.

"Preserves incidence" means QIm <=> Q"Im"

- · Suppose R is any other point on m (other than mal)
- · We need to show that R,Q,I are collinear.
- · Consider AXQR
- · X ~ Y=X~
- · Q → Q~
 - = PanyH where H=xanl
- · R ~ R = PRn YJ where J=XRnl
- This gives $\triangle x \tilde{Q} R \tilde{R}$
- To preserve incidence We need that QR intersects ℓ at the same point that $Q^{\alpha}R^{\alpha}$ does, which happens by the (P,ℓ) -Desargues' Thm. ℓ ie. We're moving points around by α in a way that preserves lines as sets of points.
- A plane is (p,l)-transitive if for any X,y continear with $P(\text{and} \neq P \text{ and } \equiv l)$ there is a (P,l)-central collineation $\propto S. \pm .$ $y = x^*$.
- · So on way to say what we've done is that a plane is (P, L)-transitive iff the (P, L)-Desargues' Thromholds.
- · We'll circle back to the algebra coordinates of the plane...

- (x,y) I (m,b) $\langle = \rangle y = T [m,x,b]$ $T \rightarrow " fernary ring"$
- · If We define + by a+b = T(1,a,b) { • by ab = T(a,b,0)
 - a + by ab = 1(a,b,0)
 - is $T(m_1x_1b) = (m \cdot x) + b$?
- · If T(m,x,b)=m.x +b, then T is "linear".
- ·We'll look (a bit) at situations involving (0,0),(0),(∞) \$ /or [∞], [0,0],[0] for which (P, L) Desargues' Thm => linearity.