Back to Showing that a collineation is central if it is axial (& vice versa) \propto is axial means it has an <u>axis</u>, ie a line L s.t. P'=P for every PIL<u>Case 1</u>: There is a point C not on l with $C^* = C$. Then C is a centre for κ (last time)

<u>Case 2:</u> For every point X not on L we have $x^{2} \neq X$. We need to find a point CIL s.t. ma = m for every line m that passes through C.

- ·Pick a point x not on I and consider the line XX*
- · let C'= ln xx. The C= C Since CIL
- · The line XX = m is fixed by α , ie m = m. Why? · m = (xC)
- - = X C
- ·Pick any line (other than l or m) that passes through C, call it t.
- · claim: ta = t
- · Proof: Suppose 4It. It's enough to Show Y"It
- ·YIt
- Y=xant
- Y= X ant

Y" I t)?

Setting it up differently:

- ·We know that I and m = XX are fixed by x.
- ·Now pick a Y not on lorm
- · If YY IC, OK! ~

- · If YY * ZC, the YY * n l at some point D + C · XX * and YY * have to intersect at some point Z * Z * L .
- · We are in the case where no point of l is fixed.

: contradiction.

- Hence, the assumption that YY^{α} EC must be wrong. Thus, $t^{\alpha} = (YY^{\alpha})^{\alpha}$
- · Thus, t = (Yy')'
 = (YC)''
 = Y'C
 = t
- ·The other direction (that central => axial) works the same way with the roles of points & lines interchanged.

A (P, L) central collineation \propto is one that has centre β and axis ℓ . Fact: If κ & β are both (P, L) central collineations, then so is $\kappa \beta = \beta \cdot \kappa$. Fact? If κ is a (P, L) central collineation, so is κ' .