Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry Trent University, Fall 2019

Solutions to Assignment \#4

Collineations

Recall from class that a collineation of a projective plane is a 1-1 onto function α that takes points of the projective plane to points of the projective plane, lines of the projective plane to lines of the projective plane, and preserves incidence. i.e. $P \mathbf{I} \ell \Leftrightarrow P^{\alpha} \mathbf{I} \ell^{\alpha}$. It is traditional to write P^{α} for $\alpha(P)$ and similarly for lines; compositions of collineations work "inside first" in this notation, e.g.. $P^{\alpha \beta}=P^{\beta \circ \alpha}=\beta(\alpha(P))$.

1. Show that if α is a collineation of a projective plane, then α^{-1} is also a collineation of the same projective plane. [2]
Solution. Since α takes points to points and lines to lines, α^{-1} must as well. Moreover, since α is 1-1 and onto, α^{-1} is as well. It remains to check that α^{-1} preserves incidence. Since α preserves incidence, we have

$$
P^{\alpha^{-1}} \mathbf{I} \ell^{\alpha^{-1}} \Longleftrightarrow P^{\alpha^{-1} \alpha} \mathbf{I} \ell^{\alpha^{-1} \alpha} \Longleftrightarrow P \mathbf{I} \ell
$$

for any point P and line ℓ, so α^{-1} preserves incidence. Thus α^{-1} is a collineation if α is a collineation.
2. Show that if α and β are collineations of a projective plane, then $\alpha \beta=\beta \circ \alpha$ is also a collineation of the same projective plane. [2]
Solution. Since α and β take points to points and lines to lines, $\alpha \beta=\beta \circ \alpha$ does as well. Moreover, since both α and β are 1-1 and onto, so is $\alpha \beta=\beta \circ \alpha$. It remains to check that $\alpha \beta=\beta \circ \alpha$ preserves incidence. Since each of α and β preserve incidence, we have

$$
P^{\alpha \beta} \mathbf{I} \ell^{\alpha \beta} \Longleftrightarrow P^{\alpha} \mathbf{I} \ell^{\alpha} \Longleftrightarrow P \mathbf{I} \ell
$$

for any point P and line ℓ, so $\alpha \beta=\beta \circ \alpha$ preserves incidence. Hence $\alpha \beta=\beta \circ \alpha$ is a collineation if α and β are collineations.

Note. For those of you taking abstract algebra, the two problems above do most of the work in showing that the collineations of a projective plane form a group, with the group operation being composition.

Recall also that a collineation is said to be (P, ℓ)-central (sometimes referred to as a (P, ℓ)-perspectivity) if it has has centre P and axis ℓ, i.e. $Q^{\alpha}=Q$ for every point Q on the axis ℓ and $m^{\alpha}=m$ for every line m passing through the centre P. (We showed in class that a collineation has an axis if and only if it has a centre.) A (P, ℓ)-central collineation is said to be an elation if P is on ℓ, and is said to be a homology if P is not on ℓ.

Definition. Two triangles $A B C$ and $D E F$ are said to be in perspective from a point P if $A D, B E$, and $C F$ are all incident with P, and in perspective from a line ℓ if $A B \cap D E$, $B C \cap E F$, and $A E \cap D F$ are all incident with ℓ.
3. Suppose α is a (P, ℓ)-central collineation of a projective plane and $A B C$ is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ. Show that $A B C$ and $A^{\alpha} B^{\alpha} C^{\alpha}$ are in perspective from P and in perspective from ℓ. [3]

Solution. Suppose α is a (P, ℓ)-central collineation of a projective plane and $A B C$ is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ.

Let $D=P A \cap \ell, E=P B \cap \ell$, and $F=P C \cap \ell$; then $D^{\alpha}=D, E^{\alpha}=E$, and $F^{\alpha}=F$ because all three points are on the axis ℓ. Since P is the centre of the collineation α, we also have $P^{\alpha}=P$, and so the lines $(P D)^{\alpha}=P^{\alpha} D^{\alpha}=P D,(P E)^{\alpha}=P^{\alpha} E^{\alpha}=P E$, and $(P D)^{\alpha}=P^{\alpha} F^{\alpha}=P F$ are fixed by α. It follows that

$$
\begin{aligned}
& P A^{\alpha}=P^{\alpha} A^{\alpha}=(P A)^{\alpha}=(P D) \alpha=P D=P A, \\
& P B^{\alpha}=P^{\alpha} B^{\alpha}=(P B)^{\alpha}=(P D) \alpha=P D=P B, \text { and } \\
& P C^{\alpha}=P^{\alpha} C^{\alpha}=(P C)^{\alpha}=(P D) \alpha=P D=P C,
\end{aligned}
$$

so A^{α} is on $P A, B^{\alpha}$ is on $P B$, and C^{α} is on $P C$, i.e. $A B C$ and $A^{\alpha} B^{\alpha} C^{\alpha}$ are in perspective from P.

Let $T=A B \cap \ell, U=A C \cap \ell$, and $V=B C \cap \ell ;$ then $T^{\alpha}=T, U^{\alpha}=U$, and $V^{\alpha}=V$ because all three points are on the axis ℓ. It follows that

$$
\begin{aligned}
& A^{\alpha} B^{\alpha} \cap \ell=(A B) \alpha \cap \ell^{\alpha}=(A T)^{\alpha} \cap \ell=A^{\alpha} T^{\alpha} \cap \ell=A^{\alpha} T \cap \ell=T, \\
& A^{\alpha} C^{\alpha} \cap \ell=(A C) \alpha \cap \ell^{\alpha}=(A U)^{\alpha} \cap \ell=A^{\alpha} U^{\alpha} \cap \ell=A^{\alpha} U \cap \ell=U, \text { and } \\
& A^{\alpha} B^{\alpha} \cap \ell=(A B) \alpha \cap \ell^{\alpha}=(A V)^{\alpha} \cap \ell=A^{\alpha} V^{\alpha} \cap \ell=A^{\alpha} V \cap \ell=T,
\end{aligned}
$$

so $A B \cap A^{\alpha} B^{\alpha}=T, A C \cap A^{\alpha} C^{\alpha}=U$, and $B C \cap B^{\alpha} C^{\alpha}=V$, which are all on the axis ℓ, i.e. $A B C$ and $A^{\alpha} B^{\alpha} C^{\alpha}$ are in perspective from ℓ.
4. Suppose α is a (P, ℓ)-central collineation of a projective plane and A and B are points of the projective plane which are not on ℓ and such that A, B, and P are not collinear, and that we know A^{α} and B^{α}. Show that this completely determines α, i.e. given any point C in the plane, show how to find C^{α}, and given any line m, show how to find m^{α}. [3]
Solution. Knowing B^{α} is a bit of a red herring here ...
Suppose α is a (P, ℓ)-central collineation of a projective plane, $A \neq P$ is a point not on ℓ for which we know A^{α}, and C is any point not on $P A$ or ℓ. Note that $(P A)^{\alpha}=P A$ and $(P C)^{\alpha}=P C$ because all lines through the centre are fixed by a (P, ℓ)-central collineation, and if we let $D=A C \cap \ell$, then $D^{\alpha}=D$ because all points on the axis ℓ are fixed by a (P, ℓ)-central collineation.
C^{α} must be on $P C$ because $P C=(P C)^{\alpha}=P^{\alpha} C^{\alpha} P C^{\alpha}$, and C^{α} must be on $A^{\alpha} D=$ $A^{\alpha} D^{\alpha}$ because C is on $A D$ and α preserves incidence. It follows that $C^{\alpha}=P C \cap A^{\alpha} D$. This means that α is completely determined for all points not on $P A$ or ℓ once we know A^{α}.

Since the centre and the points on the axis are fixed by any (P, ℓ)-central collineation, it only remains to figure out how α moves points on $P A$ that are not P, A, or $P A \cap \ell$. If we pick such a point X on $P A$ and any point C not on $P A$ or ℓ, we can pin down X^{α} by the same reasoning used in the previous paragraph, with the role played there by A now played by C and the role played there by C now played by X.

Once we know how α moves all the points, finding out how it moves lines is trivial: if m is any line, pick two points Q and R on m, and then $m^{\alpha}=(Q R)^{\alpha}=Q^{\alpha} R^{\alpha}$.

