Mathematics 3260H – Geometry II: Projective and Non-Euclidean Geometry TRENT UNIVERSITY, Fall 2019

Solutions to Assignment #4 Collineations

Recall from class that a *collineation* of a projective plane is a 1-1 onto function α that takes points of the projective plane to points of the projective plane, lines of the projective plane to lines of the projective plane, and preserves incidence. *i.e.* $P \mathbf{I} \ell \Leftrightarrow P^{\alpha} \mathbf{I} \ell^{\alpha}$. It is traditional to write P^{α} for $\alpha(P)$ and similarly for lines; compositions of collineations work "inside first" in this notation, *e.g.* $P^{\alpha\beta} = P^{\beta\circ\alpha} = \beta(\alpha(P))$.

1. Show that if α is a collineation of a projective plane, then α^{-1} is also a collineation of the same projective plane. [2]

SOLUTION. Since α takes points to points and lines to lines, α^{-1} must as well. Moreover, since α is 1-1 and onto, α^{-1} is as well. It remains to check that α^{-1} preserves incidence. Since α preserves incidence, we have

$$P^{\alpha^{-1}}\mathbf{I}\ell^{\alpha^{-1}}\iff P^{\alpha^{-1}\alpha}\mathbf{I}\ell^{\alpha^{-1}\alpha}\iff P\mathbf{I}\ell$$

for any point P and line ℓ , so α^{-1} preserves incidence. Thus α^{-1} is a collineation if α is a collineation. \Box

2. Show that if α and β are collineations of a projective plane, then $\alpha\beta = \beta \circ \alpha$ is also a collineation of the same projective plane. 2

SOLUTION. Since α and β take points to points and lines to lines, $\alpha\beta = \beta \circ \alpha$ does as well. Moreover, since both α and β are 1-1 and onto, so is $\alpha\beta = \beta \circ \alpha$. It remains to check that $\alpha\beta = \beta \circ \alpha$ preserves incidence. Since each of α and β preserve incidence, we have

$$P^{\alpha\beta}\mathbf{I}\ell^{\alpha\beta}\iff P^{\alpha}\mathbf{I}\ell^{\alpha}\iff P\mathbf{I}\ell$$

for any point P and line ℓ , so $\alpha\beta = \beta \circ \alpha$ preserves incidence. Hence $\alpha\beta = \beta \circ \alpha$ is a collineation if α and β are collineations. \Box

NOTE. For those of you taking abstract algebra, the two problems above do most of the work in showing that the collineations of a projective plane form a group, with the group operation being composition.

Recall also that a collineation is said to be (P, ℓ) -central (sometimes referred to as a (P, ℓ) -perspectivity) if it has has centre P and axis ℓ , *i.e.* $Q^{\alpha} = Q$ for every point Q on the axis ℓ and $m^{\alpha} = m$ for every line m passing through the centre P. (We showed in class that a collineation has an axis if and only if it has a centre.) A (P, ℓ) -central collineation is said to be an *elation* if P is on ℓ , and is said to be a *homology* if P is not on ℓ .

DEFINITION. Two triangles ABC and DEF are said to be in perspective from a point P if AD, BE, and CF are all incident with P, and in perspective from a line ℓ if $AB \cap DE$, $BC \cap EF$, and $AE \cap DF$ are all incident with ℓ .

3. Suppose α is a (P, ℓ) -central collineation of a projective plane and ABC is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ . Show that ABC and $A^{\alpha}B^{\alpha}C^{\alpha}$ are in perspective from P and in perspective from ℓ . [3]

SOLUTION. Suppose α is a (P, ℓ) -central collineation of a projective plane and ABC is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ .

Let $D = PA \cap \ell$, $E = PB \cap \ell$, and $F = PC \cap \ell$; then $D^{\alpha} = D$, $E^{\alpha} = E$, and $F^{\alpha} = F$ because all three points are on the axis ℓ . Since P is the centre of the collineation α , we also have $P^{\alpha} = P$, and so the lines $(PD)^{\alpha} = P^{\alpha}D^{\alpha} = PD$, $(PE)^{\alpha} = P^{\alpha}E^{\alpha} = PE$, and $(PD)^{\alpha} = P^{\alpha}F^{\alpha} = PF$ are fixed by α . It follows that

$$PA^{\alpha} = P^{\alpha}A^{\alpha} = (PA)^{\alpha} = (PD)\alpha = PD = PA,$$

$$PB^{\alpha} = P^{\alpha}B^{\alpha} = (PB)^{\alpha} = (PD)\alpha = PD = PB, \text{ and}$$

$$PC^{\alpha} = P^{\alpha}C^{\alpha} = (PC)^{\alpha} = (PD)\alpha = PD = PC,$$

so A^{α} is on PA, B^{α} is on PB, and C^{α} is on PC, *i.e.* ABC and $A^{\alpha}B^{\alpha}C^{\alpha}$ are in perspective from P.

Let $T = AB \cap \ell$, $U = AC \cap \ell$, and $V = BC \cap \ell$; then $T^{\alpha} = T$, $U^{\alpha} = U$, and $V^{\alpha} = V$ because all three points are on the axis ℓ . It follows that

$$A^{\alpha}B^{\alpha} \cap \ell = (AB)\alpha \cap \ell^{\alpha} = (AT)^{\alpha} \cap \ell = A^{\alpha}T^{\alpha} \cap \ell = A^{\alpha}T \cap \ell = T,$$

$$A^{\alpha}C^{\alpha} \cap \ell = (AC)\alpha \cap \ell^{\alpha} = (AU)^{\alpha} \cap \ell = A^{\alpha}U^{\alpha} \cap \ell = A^{\alpha}U \cap \ell = U, \text{ and}$$

$$A^{\alpha}B^{\alpha} \cap \ell = (AB)\alpha \cap \ell^{\alpha} = (AV)^{\alpha} \cap \ell = A^{\alpha}V^{\alpha} \cap \ell = A^{\alpha}V \cap \ell = T,$$

so $AB \cap A^{\alpha}B^{\alpha} = T$, $AC \cap A^{\alpha}C^{\alpha} = U$, and $BC \cap B^{\alpha}C^{\alpha} = V$, which are all on the axis ℓ , *i.e.* ABC and $A^{\alpha}B^{\alpha}C^{\alpha}$ are in perspective from ℓ . \Box

4. Suppose α is a (P, ℓ) -central collineation of a projective plane and A and B are points of the projective plane which are not on ℓ and such that A, B, and P are not collinear, and that we know A^{α} and B^{α} . Show that this completely determines α , *i.e.* given any point C in the plane, show how to find C^{α} , and given any line m, show how to find m^{α} . [3]

SOLUTION. Knowing B^{α} is a bit of a red herring here ...

Suppose α is a (P, ℓ) -central collineation of a projective plane, $A \neq P$ is a point not on ℓ for which we know A^{α} , and C is any point not on PA or ℓ . Note that $(PA)^{\alpha} = PA$ and $(PC)^{\alpha} = PC$ because all lines through the centre are fixed by a (P, ℓ) -central collineation, and if we let $D = AC \cap \ell$, then $D^{\alpha} = D$ because all points on the axis ℓ are fixed by a (P, ℓ) -central collineation.

 C^{α} must be on PC because $PC = (PC)^{\alpha} = P^{\alpha}C^{\alpha}PC^{\alpha}$, and C^{α} must be on $A^{\alpha}D = A^{\alpha}D^{\alpha}$ because C is on AD and α preserves incidence. It follows that $C^{\alpha} = PC \cap A^{\alpha}D$. This means that α is completely determined for all points not on PA or ℓ once we know A^{α} .

Since the centre and the points on the axis are fixed by any (P, ℓ) -central collineation, it only remains to figure out how α moves points on PA that are not P, A, or $PA \cap \ell$. If we pick such a point X on PA and any point C not on PA or ℓ , we can pin down X^{α} by the same reasoning used in the previous paragraph, with the role played there by A now played by C and the role played there by C now played by X.

Once we know how α moves all the points, finding out how it moves lines is trivial: if m is any line, pick two points Q and R on m, and then $m^{\alpha} = (QR)^{\alpha} = Q^{\alpha}R^{\alpha}$.