Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry

Trent University, Fall 2019
Solutions to Assignment \#3

Collineations of the Real Projective Plane from Linear Algebra

Recall from class that we can, among other ways, define the real projective plane using projective coordinates:

- Points are represented by non-zero vectors $(a, b, c) \in \mathbb{R}^{3}$, and another vector (d, e, f) represents the same point if there is a scalar $\lambda \neq 0$ such that $(a, b, c)=\lambda(d, e, f)$.
- Lines are represented by non-zero vectors $[p, q, r] \in \mathbb{R}^{3}$, and another vector $[s, t, u]$ represents the same point if there is a scalar $\lambda \neq 0$ such that $[p, q, r]=\lambda[s, t, u]$.
- A point (a, b, c) is incident with a line [p.q.r], often written as $(a, b, c) \mathbf{I}[p . q . r]$, if and only if $(a, b, c) \cdot[p, q, r]=a p+b q+c r=0$.
Suppose M is a 3×3 invertible matrix with real entries. Define a function φ that maps points of the real projective plane to points of the real projective plane by $\varphi(P)=$ $\left(\mathbf{M} P^{T}\right)^{T}=P \mathbf{M}^{T}$. (The transposes are there because points are represented by row vectors and matrix multiplication is commonly defined for column vectors.)

1. Verify that φ does indeed take points of the real projective plane to points of the real projective plane, and is also $1-1$ and onto. [5]
Solution. By it's definition, φ moves row vectors in \mathbb{R}^{3} to row vectors in \mathbb{R}^{3}. As a sanity check, note that because \mathbf{M} is invertible, $\mathbf{M x}=\mathbf{0}$ only when $\mathbf{x}=\mathbf{0}$, so φ takes non-zero vectors to non-zero vectors. Now if $P=(a . b . c)$ and $\lambda \neq 0$ is a scalar, then $\varphi(\lambda P)=\left(\mathbf{M}(\lambda P)^{T}\right)^{T}=\lambda\left(\mathbf{M} P^{T}\right)^{T}$ because multiplication by scalars passes through matrix multiplication and taking transposes. Thus φ takes different projective coordinates representing the same input point to different projective coordinates for the same output point, so it properly takes points to points.

Since \mathbf{M} is an invertible matrix, φ is an invertible function taking points to points: if we let $\varphi^{-1}(P)=\left(\mathbf{M}^{-1} P^{T}\right)^{T}$, then

$$
\begin{aligned}
& \varphi^{-1}(\varphi(P))=\left(\mathbf{M}^{-1}\left(\left(\mathbf{M} P^{T}\right)^{T}\right)^{T}\right)^{T}=\left(\mathbf{M}^{-1} \mathbf{M} P^{T}\right)^{T}=\left(P^{T}\right)^{T}=P, \text { and } \\
& \varphi\left(\varphi^{-1}(P)\right)=\left(\mathbf{M}\left(\left(\mathbf{M}^{-1} P^{T}\right)^{T}\right)^{T}\right)^{T}=\left(\mathbf{M M}^{-1} P^{T}\right)^{T}=\left(P^{T}\right)^{T}=P
\end{aligned}
$$

Any invertible function must be $1-1$ and onto.
2. Find a way to define φ on the lines so that is a $1-1$ onto function that takes lines of the real projective plane to lines of the real projective plane and also preserves incidence, i.e. has $\varphi(P) \mathbf{I} \varphi(\ell) \Leftrightarrow P \mathbf{I} \ell$ for all point P and lines ℓ of the real projective plane. Verify that your definition does the job! [5]

Solution. Since the projective coordinates of lines are defined in much the same way as the projective coordinates of points, we'll try to define φ on the lines in a way similar to the way it is defined for lines, namely $\varphi(\ell)=\left(\mathbf{A} \ell^{T}\right)^{T}=\ell \mathbf{A}^{T}$ for a suitable matrix \mathbf{A}. We need to figure out what the matrix \mathbf{A} ought to to ensure that incidence is preserved, i.e. $P \mathbf{I} \ell \Leftrightarrow P \cdot \ell=0 \Leftrightarrow \varphi(P) \cdot \varphi(\ell)=0 \Leftrightarrow \varphi(P) \mathbf{I} \varphi(\ell)$.

Since $\varphi(P) \cdot \varphi(\ell)=\varphi(\ell) \cdot \varphi(P)=\left(\ell \mathbf{A}^{T}\right) \cdot\left(P \mathbf{M}^{T}\right)=\left(\ell \mathbf{A}^{T}\right)\left(P \mathbf{M}^{T}\right)^{T}=\ell \mathbf{A}^{T} \mathbf{M} P^{T}$, making $\mathbf{A}^{T}=\mathbf{M}^{-1}$, so $\mathbf{A}=\left(\mathbf{M}^{-1}\right)^{T}$ ought to work. Let's check this:

$$
\varphi(P) \cdot \varphi(\ell)=\ell \mathbf{A}^{T} \mathbf{M} P^{T}=\ell \mathbf{M}^{-1} \mathbf{M} P^{T}=\ell P^{T}=\ell \cdot P=P \cdot \ell
$$

It follows that $P \mathbf{I} \ell \Leftrightarrow P \cdot \ell=0 \Leftrightarrow \varphi(P) \cdot \varphi(\ell)=0 \Leftrightarrow \varphi(P) \mathbf{I} \varphi(\ell)$, i.e. φ so defined preserves incidence.

Note that if \mathbf{M} is invertible, so is $\mathbf{A}=\left(\mathbf{M}^{-1}\right)^{T}$. It follows that φ is $1-1$ and onto on the lines of the real projective plane, using the same argument as was used for points and M in solving question 1.

