Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry
 Trent University, Fall 2019

Assignment \#9

Linear algebra?!
Due on Monday, 11 November.
Recall that we showed in class how to introduce extended affine coordinates into an arbitrary projective plane and define an associated ternary ring as follows:

Suppose that $\pi=(\mathcal{P}, \mathcal{L}, \mathbf{I})$ is a projective plane and that R is a set of symbols, including 0 and 1 , which is just large enough to assign a symbol from R to each point of some line in the affine plane corresponding to π. (That is, $|\mathcal{P}|=|R|+1$.)

Choose a quadrangle $O E U V$ in π (the fundamental quadrangle of the coordinate system) and declare their coordinates to be $O=(0,0), E=(1,1)$, $U=(0)$, and $V=(\infty)$. Give every other point on the line $O E$ coordinates of the form (a, a) for some distinct a in $R \backslash\{0,1\}$. For any point X not incident with $O E$ or $U V$, we assign coordinates by setting $X=(a, b)$ if $X V \cap O E=(a, a)$ and $X U \cap O E=(b, b)$. Finally, give each point Y on $U V$, other than U or V, coordinates by setting $Y=(m)$ if $O Y \cap E V=(1, m)$.

For each $m, k \in R$, the line joining the point $(0, k)$ and the point (m) is given coordinates $[m, k$, and for each $a \in R$, the line joining $V=(\infty)$ to (a, a) is given the coordinate $[a]$. Finally, $U V$ is given the coordinate $[\infty]$.

The ternary operation T of the corresponding ternary ring is defined by setting $y=T(m, x, k)$ if and only if $(x, y) \mathbf{I}[m, k]$. We can then define + and \cdot on R by $a+b=T(1, a, b)$ and $a \cdot b=T(a, b, 0)$. A ternary ring is linear if we have $T(m, x, k)=(m \cdot x)+k$ for all $m, x, k \in R$.

1. Suppose a projective plane with extended affine coordinates is $(U, O V)=((0),[0])$ transitive. Show that the corresponding ternary ring is linear. [10]
