Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry

Trent University, Fall 2019

Assignment \#4

Collineations
Due on Thursday, 3 October.
Recall from class that a collineation of a projective plane is a 1-1 onto function α that takes points of the projective plane to points of the projective plane, lines of the projective plane to lines of the projective plane, and preserves incidence. i.e. $P \mathbf{I} \ell \Leftrightarrow P^{\alpha} \mathbf{I} \ell^{\alpha}$. It is traditional to write P^{α} for $\alpha(P)$ and similarly for lines; compositions of collineations work "inside first" in this notation, e.g.. $P^{\alpha \beta}=P^{\beta \circ \alpha}=\beta(\alpha(P))$.

1. Show that if α is a collineation of a projective plane, then α^{-1} is also a collineation of the same projective plane. [2]
2. Show that if α and β are collineations of a projective plane, then $\alpha \beta=\beta \circ \alpha$ is also a collenation of the same projective plane. [2]

Note. For those of you taking abstract algebra, the two problems above do most of the work in showing that the collineations of a projective plane form a group, with the group operation being composition.

Recall also that a collineation is said to be (P, ℓ)-central (sometimes referred to as a (P, ℓ)-perspectivity) if it has has centre P and axis ℓ, i.e. $Q^{\alpha}=Q$ for every point Q on the axis ℓ and $m^{\alpha}=m$ for every line m passing through the centre P. (We showed in class that a collineation has an axis if and only if it has a centre.) A (P, ℓ)-central collineation is said to be an elation if P is on ℓ, and is said to be a homology if P is not on ℓ.

Definition. Two triangles $A B C$ and $D E F$ are said to be in perspective from a point P if $A D, B E$, and $C F$ are all incident with P, and in perspective from a line ℓ if $A B \cap D E$, $B C \cap E F$, and $A E \cap D F$ are all incident with ℓ.
3. Suppose α is a (P, ℓ)-central collineation of a projective plane and $A B C$ is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ. Show that $A B C$ and $A^{\alpha} B^{\alpha} C^{\alpha}$ are in perspective from P and in perspective from ℓ. [3]
4. Suppose α is a (P, ℓ)-central collineation of a projective plane and A and B are points of the projective plane which are not on ℓ and such that A, B, and P are not collinear, and that we know A^{α} and B^{α}. Show that this completely determines alpha, i.e. given any point C in the plane, show how to find C^{α}, and given any line m, show how to find m^{α}. [3]

