Mathematics 3260H – Geometry II: Projective and Non-Euclidean Geometry TRENT UNIVERSITY, Fall 2019

Assignment #4 Collineations Due on Thursday, 3 October.

Recall from class that a *collineation* of a projective plane is a 1-1 onto function α that takes points of the projective plane to points of the projective plane, lines of the projective plane to lines of the projective plane, and preserves incidence. *i.e.* $P \mathbf{I} \ell \Leftrightarrow P^{\alpha} \mathbf{I} \ell^{\alpha}$. It is traditional to write P^{α} for $\alpha(P)$ and similarly for lines; compositions of collineations work "inside first" in this notation, *e.g.* $P^{\alpha\beta} = P^{\beta\circ\alpha} = \beta(\alpha(P))$.

- 1. Show that if α is a collineation of a projective plane, then α^{-1} is also a collineation of the same projective plane. [2]
- **2.** Show that if α and β are collineations of a projective plane, then $\alpha\beta = \beta \circ \alpha$ is also a collenation of the same projective plane. [2]

NOTE. For those of you taking abstract algebra, the two problems above do most of the work in showing that the collineations of a projective plane form a group, with the group operation being composition.

Recall also that a collineation is said to be (P, ℓ) -central (sometimes referred to as a (P, ℓ) -perspectivity) if it has has centre P and axis ℓ , *i.e.* $Q^{\alpha} = Q$ for every point Q on the axis ℓ and $m^{\alpha} = m$ for every line m passing through the centre P. (We showed in class that a collineation has an axis if and only if it has a centre.) A (P, ℓ) -central collineation is said to be an *elation* if P is on ℓ , and is said to be a *homology* if P is not on ℓ .

DEFINITION. Two triangles ABC and DEF are said to be in perspective from a point P if AD, BE, and CF are all incident with P, and in perspective from a line ℓ if $AB \cap DE$, $BC \cap EF$, and $AE \cap DF$ are all incident with ℓ .

- **3.** Suppose α is a (P, ℓ) -central collineation of a projective plane and ABC is a triangle of the projective plane such that none of A, B, and C are P or incident with ℓ . Show that ABC and $A^{\alpha}B^{\alpha}C^{\alpha}$ are in perspective from P and in perspective from ℓ . [3]
- 4. Suppose α is a (P, ℓ) -central collineation of a projective plane and A and B are points of the projective plane which are not on ℓ and such that A, B, and P are not collinear, and that we know A^{α} and B^{α} . Show that this completely determines *alpha*, *i.e.* given any point C in the plane, show how to find C^{α} , and given any line m, show how to find m^{α} . [3]