Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry Trent University, Fall 2019
 Assignment \#3
 Collineations of the Real Projective Plane from Linear Algebra
 Due on Thursday, 26 September.

Recall from class that we can, among other ways, define the real projective plane using projective coordinates:

- Points are represented by non-zero vectors $(a, b, c) \in \mathbb{R}^{3}$, and another vector (d, e, f) represents the same point if there is a scalar $\lambda \neq 0$ such that $(a, b, c)=\lambda(d, e, f)$.
- Lines are represented by non-zero vectors $[p, q, r] \in \mathbb{R}^{3}$, and another vector $[s, t, u]$ represents the same point if there is a scalar $\lambda \neq 0$ such that $[p, q, r]=\lambda[s, t, u]$.
- A point (a, b, c) is incident with a line [p.q.r], often written as $(a, b, c) \mathbf{I}[p . q . r]$, if and only if $(a, b, c) \cdot[p, q, r]=a p+b q+c r=0$.
Suppose A is a 3×3 invertible matrix with real entries. Define a function φ that maps points of the real projective plane to points of the real projective plane by $\varphi(P)=$ $\left(\mathbf{M} P^{T}\right)^{T}=P \mathbf{M}^{T}$. (The transposes are there because points are represented by row vectors and matrix multiplication is commonly defined for column vectors.)

1. Verify that φ does indeed take points of the real projective plane to points of the real projective plane, and is also $1-1$ and onto. [5]
2. Find a way to define φ on the lines so that is a $1-1$ onto function that takes lines of the real projective plane to lines of the real projective plane and also preserves incidence, i.e. has $\varphi(P) \mathbf{I} \varphi(\ell) \Leftrightarrow P \mathbf{I} \ell$ for all point P and lines ℓ of the real projective plane. Verify that your definition does the job! [5]
