Mathematics 3260H - Geometry II: Projective and Non-Euclidean Geometry
Trent University, Fall 2019
Assignment \#1
A modified Cartesian plane
Due on Thursday, 12 September.

An affine plane is a geometry consisting of a set of points and and a set of lines satisfying the following axioms:

AI. Any two distinct points are connected by an unique line.
AII. Given a line ℓ and a point P not on ℓ, there is an unique line m through P that has no points in common with ℓ.
AIII. There exist three points that are not all on the same line.
The Moulton plane is the affine plane obtained from the Cartesian plane by replacing straight lines with negative slope by lines which bend to double the slope as they cross the y-axis from left to right.

More formally:

- The points of the Moulton plane are the points of the Cartesian plane \mathbb{R}^{2}.
- The lines of the Moulton plane include:
- The vertical lines of the Cartesian plane, i.e. $x=c$ for each $c \in \mathbb{R}$.
- The lines of non-negative slope of the Cartesian plane, i.e. $y=m x+b$ for $m, b \in \mathbb{R}$ with $m \geq 0$.
- The bent lines given by $y=\left\{\begin{array}{ll}m x+b & x \leq 0 \\ 2 m x+b & x \geq 0\end{array}\right.$ for $m, b \in \mathbb{R}$ with $m \leq 0$.
- A point is on a line of the Moulton plane exactly when its Cartesian coordinates satisfy the equation of the line.

1. Verify that the Moulton plane is indeed an affine plane. [10]
