Mathematics 3260H – Geometry II: Projective and non-Euclidean geometry TRENT UNIVERSITY, Fall 2017

Assignment #6 A modified Cartesian plane Due on Wednesday, 1 November.

Recall from class that an affine plane is a geometry consisting of a set of points and lines satisfying the following axioms:

- AI. Any two distinct points are connected by an unique line.
- **AII.** Given a line ℓ and a point P not on ℓ , there is an unique line m through P that has no points in common with ℓ .
- **AIII.** There exist three points that are not all on the same line.

The *Moulton plane* is the affine plane obtained from the Cartesian plane by replacing straight lines with negative slope by lines which bend to double the slope as they cross the y-axis from left to right.

More formally:

- The points of the Moulton plane are the points of the Cartesian plane \mathbb{R}^2 .
- The lines of the Moulton plane include:
 - The vertical lines of the Cartesian plane, *i.e.* x = c for each $c \in \mathbb{R}$.
 - The lines of non-negative slope of the Cartesian plane, *i.e.* y = mx + b for $m, b \in \mathbb{R}$ with $m \ge 0$.
 - The bent lines given by $y = \begin{cases} mx+b & x \le 0\\ 2mx+b & x \ge 0 \end{cases}$ for $m, b \in \mathbb{R}$ with $m \le 0$.
- A point is on a line of the Moulton plane exactly when its Cartesian coordinates satisfy the equation of the line.
- 1. Verify that the Moulton plane is indeed an affine plane. [10]