Mathematics 3260H - Geometry II: Projective and non-Euclidean geometry

 Trent University, Fall 2017Assignment \#5
Triangles and Saccheri Quadrilaterals
Due on Wednesday, 18 October.
Recall that a Saccheri quadrilateral is a quadrilateral $A B C D$ in which sides $A B$ and $C D$ are perpendicular to the base $B C$, with A and D on the same side of $B C$, and with $A B=C D$ (i.e. $A B$ and $C D$ have the same length).

One can use Postulates I-IV to show that $\angle B A D=\angle C D A$, but they don't quite suffice to show that these angles are right angles.

1. Suppose that every Saccheri quadrilateral $A B C D$ as above has $\angle B A D=\angle C D A$ be right angles. Show that it follows that the sum of the interior angles of any triangle is two right angles. [10]
