Mathematics 3260H - Geometry II: Projective and non-Euclidean geometry

 Trent University, Fall 2017
Assignment \#4

Congruence in the hyperbolic plane

Due on Wednesday, 11 October.
By way of notation, let the sides opposite the vertices A, B, and C of $\triangle A B C$ have lengths a, b, and c, respectively, and denote the interior angles at the vertices by α, β, and γ respectively. Recall from class that if $\triangle A B C$ is a triangle of the hyperbolic plane, then:

$$
\begin{aligned}
\cosh (a) & =\cosh (b) \cosh (c)-\cos (\alpha) \sinh (b) \sinh (c) \\
\cos (\alpha) & =\cos (a) \sin (\beta) \sin (\gamma)-\cos (\beta) \cos (\gamma) \\
\frac{\sin (\alpha)}{\sinh (a)} & =\frac{\sin (\beta)}{\sinh (b)}=\frac{\sin (\gamma)}{\sinh (c)}
\end{aligned}
$$

Similar equations, mutatis mutandis, hold if we interchange the roles of the various angles and the sides opposite to them. Moreover, the area of $\triangle A B C$ is $\pi-\alpha-\beta-\gamma$ (measuring angles in radians and with a suitable choice of units for length).

1. Does each of the following congruence criteria work in the hyperbolic plane? Justify your answer as best you can in each case. [10 $=5 \times 2$ each]
i. SSS ii.SAS iii. ASA $i v$. SAA $\quad v$. AAA $\quad[\mathrm{S}=$ Side and $\mathrm{A}=$ Angle $]$
