Mathematics 3260H - Geometry II: Projective and non-Euclidean geometry Trent University, Fall 2017

Assignment \#10 11

Linear algebra and the real projective plane Due on Wednesday, 6 December.

Recall that one of the ways to get the real projective plane is to call the 1-dimensional subspaces of \mathbb{R}^{3} points and the 2-dimensional subspaces of \mathbb{R}^{3} lines, with a "point" being incident with a "line" if and only if the 1-dimensional subspace is a subpace of the 2 dimensinal subspace. Projective coordinates for points and lines of the real projective plane are then direction vectors for the 1-dimensional subspaces and normal vectors for the 2 -dimensional subspaces.

1. It was noted in class that an invertible linear transformation of \mathbb{R}^{3} gives a collineation of the real projective plane. Does every collineation of the real projective plane come from an invertible linear transformation of \mathbb{R}^{3} ? Prove that it does or find a counterexample. [10]
