Similar Triangles and Similarity Criteria

Informally, two triangles are said to be similar if they have the same shape, though not necessarily the same size. Officially:

DEFInition. $\triangle A B C$ is similar to $\triangle D E F$, often written as $\triangle A B C \sim \triangle D E F$, if corresponding angles of the triangles are equal, i.e. $\angle A B C=\angle D E F, \angle B C A=$ $\angle E F D$, and $\angle C A B=\angle F D E$.

Similarity is a very useful tool that we will get into a little earlier than Euclid does in the Elements by developing some of the basic properties of similar triangles from highschool trigonometry. To make sure trigonometry works as intended, we will assume thoughout this assignment that the sum of the interior angles of a triangle is equal to two right angles (or π radians, or 180°). (This fact turns out to be equivalent to Euclid's parallel postulate, as we'll see later on.)

We will first prove the Law of Sines and the Law of Cosines, both of which we will use later to help prove things about similarity of triangles.

The Law of Sines. In any $\triangle A B C$:

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|}
$$

Proof. Suppose we are given $\triangle A B C$. Draw a line perpendicular to $B C$ from A, meeting (an extension of) $B C$ (if necessary) at D, as in the diagram below.

Note that $\triangle A D B$ and $\triangle A D C$ are right triangles with $\angle A D C=\triangle A D B$ as the right angle(s). Note further that if $\angle A B C$ is obtuse, as in the given diagram, then, measuring angles in radians, $\angle A B D=\pi-\angle A B C$ and so $\sin (\angle A B C)=\sin (\pi-\angle A B C)=$ $\sin (\angle A B D)$. If $\angle A B C$ were to be acute instead, then $\angle A B D=\angle A B C$ and so we would
still have $\sin (\angle A B C)=\sin (\angle A B D)$. (We leave it to the interested reader to figure out what happens when $\angle A B C$ is a right angle, in which case $B=D$. :-)

It follows that

$$
\begin{aligned}
& \sin (\angle A C B)=\sin (\angle A C D)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{|A D|}{|A C|} \\
& \sin (\angle A B C)=\sin (\angle A B D)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{|A D|}{|A B|}
\end{aligned}
$$

Thus $|A C| \sin (\angle A C B)=|A D|=|A B| \sin (\angle A B C)$. Dividing on both ends of the equation by $|A C| \cdot|A B|$ now gives us $\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|}$. A similar argument will show that $\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}$, completing the proof of the Law of Sines.

The Law of Cosines. In any $\triangle A B C$:

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C)
$$

Proof. I really can't improve on the presentation of the standard trigonometric proof from the Wikipedia article about the Law of Cosines:

Using trigonometry [edit]

```
Dropping the perpendicular onto the side c through point C, an altitude of the triangle, shows (see
Fig. 5)
    c=a\operatorname{cos}\beta+b\operatorname{cos}\alpha.
(This is still true if a or \beta}\mathrm{ is obtuse, in which case the perpendicular falls outside the triangle.)
Multiplying through by c yields
    c}\mp@subsup{c}{}{2}=ac\operatorname{cos}\beta+bc\operatorname{cos}\alpha
Considering the two other altitudes of the triangle yields
    a}=ac\operatorname{cos}\beta+ab\operatorname{cos}\gamma
    b}=bc\operatorname{cos}\alpha+ab\operatorname{cos}\gamma
Adding the latter two equations gives
    a}+\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}=ac\operatorname{cos}\beta+bc\operatorname{cos}\alpha+2ab\operatorname{cos}\gamma
Subtracting the first equation from the last one results in
```


Fig. 5 - An acute triangle with perpendicular कo

```
    a}+\mp@subsup{b}{}{2}-\mp@subsup{c}{}{2}=ac\operatorname{cos}\beta+bc\operatorname{cos}\alpha+2ab\operatorname{cos}\gamma-(ac\operatorname{cos}\beta+bc\operatorname{cos}\alpha
which simplifies to
    c}\mp@subsup{c}{}{2}=\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}-2ab\operatorname{cos}\gamma
This proof uses trigonometry in that it treats the cosines of the various angles as quantities in their own right. It uses the fact that the cosine of an angle expresses the relation between the two sides enclosing that angle in any right triangle. Other proofs (below) are more geometric in that they treat an expression such as \(a \cos \gamma\) merely as a label for the length of a certain line segment.
```

Note that the Law of Cosines reduces to the Pythagorean Theorem when $\angle B A C$ is a right angle.

Theorem. Several useful facts about similarity of triangles are equivalent to the definition:

$$
\begin{aligned}
\triangle A B C \sim \triangle D E F \Longleftrightarrow & \angle A B C=\angle D E F, \angle B C A=\angle E F D, \text { and } \angle C A B=\angle F D E \\
& {[\text { Definition] }} \\
\Longleftrightarrow & \angle A B C=\angle D E F \text { and } \angle B C A=\angle E F D \\
& {[\text { Angle-Angle Similarity Criterion] }} \\
\Longleftrightarrow & \frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}
\end{aligned}
$$

[Side-Side-Side Similarity Criterion]

$$
\Longleftrightarrow \angle C A B=\angle F D E \text { and } \frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}
$$

[Side-Angle-Side Similarity Criterion]
Proof. 1. Similarity implies the Angle-Angle Similarity Criterion. This is trivial: if $\triangle A B C \sim \triangle D E F$, so $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$, then we certainly have $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$.
2. The Angle-Angle Similarity Criterion implies Similarity. Suppose $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$. Since the sum of the internal angles of any triangle is two right angles, we also have

$$
\angle C A B=\pi-\angle A B C-\angle B C A=\pi-\angle D E F-\angle E F D=\angle F D E .
$$

Since all three pairs of corresponding angles are equal, $\triangle A B C \sim \triangle D E F$ by definition.
3. Similarity implies the Side-Side-Side Similarity Criterion. Suppose $\triangle A B C \sim \triangle D E F$, so $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$. By the Law of Sines we have

$$
\begin{aligned}
\frac{\sin (\angle B A C)}{|B C|} & =\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|} \\
\text { and } \frac{\sin (\angle E D F)}{|E F|} & =\frac{\sin (\angle D E F)}{|D F|}=\frac{\sin (\angle D F E)}{|D E|}
\end{aligned}
$$

Inverting the former equation and multiplying it into the latter, we get

$$
\frac{\sin (\angle E D F)}{|E F|} \cdot \frac{|B C|}{\sin (\angle B A C)}=\frac{\sin (\angle D E F)}{|D F|} \cdot \frac{|A C|}{\sin (\angle A B C)}=\frac{\sin (\angle D F E)}{|D E|} \cdot \frac{|A B|}{\sin (\angle A C B)} .
$$

Because the corresponding angles are equal, they cancel out, leaving us with

$$
\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}=\frac{|A B|}{|D E|}
$$

as required.
4. The Side-Side-Side Similarity Criterion implies Similarity. Suppose that $\frac{|B C|}{|E F|}=$ $\frac{|A C|}{|D F|}=\frac{|A B|}{|D E|}$. Let $r=\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. By the Law of Cosines, we have

$$
\begin{aligned}
|B C|^{2} & =|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) \\
\text { and }|E F|^{2} & =|D E|^{2}+|D F|^{2}-2 \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) .
\end{aligned}
$$

Multiplying the latter equation by r^{2} yields:

$$
\begin{gathered}
r^{2}|E F|^{2}=r^{2}|D E|^{2}+r^{2}|D F|^{2}-2 r^{2} \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) \\
\Longrightarrow \\
\left(\frac{|B C|}{|E F|}\right)^{2}|E F|^{2}=\left(\frac{|A B|}{|D E|}\right)^{2}|D E|^{2}+\left(\frac{|A C|}{|D F|}\right)^{2}|D F|^{2} \\
-2 \cdot \frac{|A B|}{|D E|} \cdot \frac{|A C|}{|D F|} \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) \\
\Longrightarrow \\
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle E D F)
\end{gathered}
$$

It follows that

$$
\cos (\angle B A C)=\frac{|B C|^{2}-|A B|^{2}-|A C|^{2}}{-2 \cdot|A B| \cdot|A C|}=\cos (\angle E D F) .
$$

Since the interior angles in a triangle are each between 0 and two right angles and the cosine function is $1-1$ on this domain, it follows that $\angle B A C=\angle E D F$. Similar arguments can be used to show that $\angle A B C=\angle D E F$ and $\angle A C B=\angle D F E$, so the triangles are similar, i.e. $\triangle A B C \sim \triangle D E F$, by definition.
5. Similarity imples the Side-Angle-Side Similarity Criterion. Suppose $\triangle A B C \sim \triangle D E F$, so $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$. By part 3 above, it follows that $\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}=\frac{|A B|}{|D E|}$. In particular, we have $\angle C A B=\angle F D E$ and $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}$, the conditions for the Side-Angle-Side Similarity Criterion.
6. The Side-Angle-Side Similarity Criterion implies Similarity. Suppose $\angle C A B=\angle F D E$ and $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$. Let $r=\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$. By the Law of Cosines, we have

$$
\begin{aligned}
|B C|^{2} & =|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle C A B) \\
\text { and }|E F|^{2} & =|D E|^{2}+|D F|^{2}-2 \cdot|D E| \cdot|D F| \cdot \cos (\angle F D E) .
\end{aligned}
$$

Multiplying the latter equation by r^{2} yields and using $\angle C A B=\angle F D E$:

$$
\begin{aligned}
r^{2}|E F|^{2}= & r^{2}|D E|^{2}+r^{2}|D F|^{2}-2 r^{2} \cdot|D E| \cdot|D F| \cdot \cos (\angle F D E) \\
= & \left(\frac{|A B|}{|D E|}\right)^{2}|D E|^{2}+\left(\frac{|A C|}{|D F|}\right)^{2}|D F|^{2} \\
& -2 \cdot \frac{|A B|}{|D E|} \cdot \frac{|A C|}{|D F|} \cdot|D E| \cdot|D F| \cdot \cos (\angle C A B) \\
= & |A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle C A B) \\
= & |B C|^{2}
\end{aligned}
$$

It follows that $r^{2}=\frac{|B C|^{2}}{|E F|^{2}}$, and so $r=\frac{|B C|}{|E F|}=\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$. It now follows from the Side-Side-Side Similarity Criterion (see part 4 above) that the triangles are similar, i.e. $\triangle A B C \sim \triangle D E F$.

This completes the proof. Whew!
Note that similarity of triangles works somewhat differently in geometries where the parallel postulate fails: in both hyperbolic [many lines through a given point that are parallel to a given line] and elliptic geometries [no parallel lines at all], similarity of triangles is the same as congruence, i.e. triangles that have the same shape also have the same size.

