Lecture 3

Thursday, January 11, 2024 8:52 AM

I-J: Isosceles triangles have equal base angles Proof IAB) = |AC| is given (to show LABC = LACB) -rapply side-angle-side congruence criteria Consider SABC + SACB we have IABI=[AC] -given and IACI = IABI -given and LBAC = LCAB by proposition I-4 - Side - angle - Side congruence use have DABC = DACB . corresponding angles are equal for the 2 triangles in particular, CABC = LACB. Proposition I-6: suppose DABC has LABC = LACB Then, [AB] = [AC] - prove w B being put on C, and BC lying along CB, and A on the same side of CB as A. Prof: Apply AACB to AABC. since (BC) = [CB] and BC lies along CB and B is on C, we must have C on B. Still need A on A - How? (B vertex on c vertex)

State in a constant
(B varies in a constant)
Since
$$\angle BRCB = \angle BBC$$
, the way on BR, and since $\angle BBC = \angle BCB$, BA lies on CA
whereast
 $\therefore A = CH \cap BR$
 $= BR \cap CA$
 $= R$
Since R is on R, B is on C and the on B, we have $|AB| = |AC|$. ,
Proposition I=7: suppose we are given AB and c $\angle Cuhich is not any extension of AB)$
 $Neen any pt D on the same side of RB as C and w
 $|RO| = |AC|$ and $|SO| = |BC|$, is actually C.
Free Since $|AC| = |AC| = |AC| = |BB|$, $\triangle BCO$ are isocolors
 $R = B$, E forwas by $I = G$, and $\angle ABCO$ and $\triangle BCO$ are isocolors
 $R = B$, E forwas by $I = G$, and $\angle ABCO = \angle ABCO$.
Then, in the preview, $\angle BCO = \angle ABC$ and $\angle ABCO = \angle BBC$.
Then, in the preview, $\angle BCO = \angle BOC$
 $\therefore O = C_{11}$.
Proposition T=8 - also side side side composed of sides equal.
 $[Inst = |BC| + |BC| + |BC| + |BC|]$ then $ABCC = \triangle DEF$.
 $Proposition T=8 - also Side - Side composed of RB as C.
 $ABCO = ABCF now $\triangle ABCF$ and $|BC| = |EF|]$ then $ABCC = \triangle DEF$.
Proposition T=8 - also Side - Side of RB as C.
 $ABC = ABCF on the same side of RB as C.$
 $ABC = ABCF on the same side of RB as C.$$$$

