Mathematics $2260 H$ - Geometry I: Euclidean Geometry
 Trent University, Winter 2023
 Assignment \#2
 Congruence and Similarity
 Due on Friday, 27 January.*

The Angle-Side-Side congruence criterion asserts that if we are give triangles $\triangle A B C$ and $\triangle D E F$ with $\angle A B C=\angle D E F,|B C|=|E F|$, and $|C A|=|F D|$, then $\triangle A B C \cong$ $\triangle D E F$.

Recall that an angle is acute if it is less than a right angle and obtuse if it is greater than a right angle.

1. Give an example to show that the Angle-Side-Side congruence criterion may fail when the angle is acute. [2]
2. Explain (informally!) why the Angle-Side-Side congruence criterion works if the angle is a right or obtuse angle. [1]

A close relative of congruence is the notion of similarity ${ }^{\dagger}$. Two triangles, say $\triangle A B C$ and $\triangle D E F$, are said to be similar, written as $\triangle A B C \sim \triangle D E F$, if corresponding angles are equal, i.e. if $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$. Intuitively, this means that the triangles have the same shape, but may be of different sizes; scaling one up or down can make it congruent to the other.

Since we haven't gotten through enough of Euclid's Elements to handle similarity his way, we will develop it using trigonometry instead. You may also assume that the sum of the interior angles of a triangle is equal to two right angles. (This turns out to be equivalent to Postulate V, by the way.) In particular, you may assume the Law of Sines for triangles, i.e. given any $\triangle A B C$,

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|},
$$

as well as the Cosine Law for triangles, i.e. given any $\triangle A B C$,

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) .
$$

[^0]3. (Angle-Angle Similarity Criterion) Show that if $\angle A B C=\angle D E F$ and $\angle B C A=$ $\angle E F D$ in triangles $\triangle A B C$ and $\triangle D E F$, then $\triangle A B C \sim \triangle D E F$. [1]
4. Show that if $\triangle A B C \sim \triangle D E F$, then $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. [2]
4. (Side-Side-Side Similarity Criterion) Show that if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$ in triangles $\triangle A B C$ and $\triangle D E F$, then $\triangle A B C \sim \triangle D E F$. [2]
5. (Side-Angle-Side Similarity Criterion) Show that if $\angle B A C=\angle E D F$ and $\frac{|A B|}{|D E|}=$ $\frac{|A C|}{|D F|}$ in triangles $\triangle A B C$ and $\triangle D E F$, then $\triangle A B C \sim \triangle D E F$. [2]

[^0]: * If submitting on paper or on Blackboard isn't feasible, please email your solutions to the instructor at: sbilaniuk@trentu.ca
 \dagger So closely are they related that congruence and similarity are the same thing when Postulate V fails!

