Mathematics 2260H - Geometry I: Euclidean Geometry Trent University, Winter 2023
 Assignment \#10 - Menelaus' and Ceva's Theorems
 Due on Friday, 24 March.

Recall that a cevian of a triangle is a line joining a vertex to a point on (an extension of) the opposite side. We proved the following in class on 2023-03-21:

Ceva's Theorem. If $A D, B E$, and $C F$ are cevians of $\triangle A B C$, then they are concurrent in a point S if and only if $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=+1$.

The components of the product in the the theorem use the convention that if points X, Y, and Z are on the same line, then

$$
\frac{X Y}{Y Z}=\left\{\begin{array}{ll}
+\frac{|X Y|}{|Y Z|} & \text { if } Y \text { is between } X \text { and } Z \\
-\frac{|X Y|}{|Y Z|} & \text { otherwise }
\end{array} .\right.
$$

1. Use Ceva's Theorem to show that the medians of a triangle are concurrent. [2]

On the same day, we also proved the following, using the same convention about ratios of line segments:

Menelaus' Theorem. Suppose P, Q, and R are points on (extensions of) sides $A B, B C$, and $A C$ of $\triangle A B C$. Then P, Q, and R are collinear if and only if $\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R A}=-1$.
2. Use Menalaus' Theorem to prove the forward direction of Ceva's Theorem, i.e. that if $A D, B E$, and $C F$ are cevians of $\triangle A B C$ that are concurrent in a point S, then $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=+1 .[8]$

Hint: You will need to apply Menelaus' Theorem to some of the subtriangles the cevians meeting at S divide $\triangle A B C$ into.

