Mathematics 2260H – Geometry I: Euclidean Geometry

TRENT UNIVERSITY, Winter 2021

Solutions to Assignment #3 A centre for a regular n-gon

Due on Friday, 5 February.

Recall that a regular polygon is one with all sides of equal length and all internal angles equal. A polygon with n sides is often referred to as an n-gon.* In what follows, suppose $A_1 A_2 \ldots A_n$ is a regular n-gon in the Euclidean plane for some $n \geq 3$.

1. Let ℓ_1, ℓ_2, \ldots , and ℓ_n be the lines bisecting (*i.e.* cutting in half) the interior angles at A_1, A_2, \ldots , and A_n , respectively, of the regular n-gon $A_1 A_2 \ldots A_n$. Show that ℓ_1, ℓ_2, \ldots , and ℓ_n are *concurrent*, that is meet at a common point O. [4]

Solution. Here is diagram of the case n = 8:

We will not only show that the angle bisectors are all concurrent at a point O, but that this point is equidistant from all the vertices of the polygon. The latter fact will help with questions $\mathbf 2$ and $\mathbf 3$.

Since $A_1A_2...A_n$ is a regular n-gon, each internal angle must be less than a straight angle. It follows that the bisectors of the equal internal angles at A_1 and A_2 , namely ℓ_1 and ℓ_2 , make with A_1A_2 are equal to each other and each is less than half a straight angle, *i.e.* each is less than a right angle. Thus A_1A_2 is a line falling across the lines ℓ_1 and ℓ_2 ,

^{*} For small n we have common names: triangle, quadrilateral, pentagon, and so on. Note that in the Euclidean and hyperbolic planes an n-gon with positive area must have $n \geq 3$, but in the elliptic plane there are 2-gons ("biangles"?) with positive area.

with the internal angles on one side adding up to less than two right angles, so ℓ_1 and ℓ_2 must intersect on that side of A_1A_2 (the side the rest of the polygon is on) by Postulate V. Call this point of intersection O. Note that since $\angle OA_1A_2 = \angle OA_2A_1$, it follows by Proposition I-6 that $|OA_1| = |OA_2|$, i.e $\triangle OA_1A_2$ is isosceles.

We can apply the same reasoning to A_2 , A_3 , ℓ_2 , and ℓ_3 to get that ℓ_2 and ℓ_3 intersect at some point P. We claim that P=O. Since $|A_1A_2|=|A_2A_3|$ (since the polygon is regular) and $\angle OA_1A_2=\angle OA_2A_1=\angle PA_2A_3=\angle PA_3A_2$ (since each is half of an internal angle of the regular polygon, all of which are equal), it follows by the ASA congruence criterion (Proposition I-26) that $\triangle OA_1A_2\cong \triangle PA_3A_2$. This means that $|OA_2|=|PA_2|$. Since O and P are both on the angle bisector ℓ_2 on the same side of A_2 and an equal distance from A_2 , O and P must be the same point. Since $\triangle OA_1A_2\cong \triangle OA_3A_2$ and the former triangle is isosceles, so is the other. In particular, $|OA_1|=|OA_2|=|OA_3|$

We can apply the reasoning in the paragraph above to successively show that ℓ_3 and ℓ_4 intersect at O, ℓ_4 and ℓ_5 intersect at O, and so on. Thus all the angle bisectors ℓ_1 , ℓ_2 , ..., and ℓ_n are concurrent at O. Moreover, all the vertices are equidistant from O, *i.e.* $|OA_1| = |OA_2| = \cdots = |OA_n|$.

2. Let m_1, m_2, \ldots , and m_n be the perpendicular bisectors (*i.e.* lines cutting in half at a right angle) of the sides A_1A_2, A_2A_3, \ldots , and A_nA_1 , respectively, of the regular n-gon $A_1A_2 \ldots A_n$. Show that m_1, m_2, \ldots , and m_n are also concurrent at the point O in question 1. [4]

SOLUTION. Let M_1, M_2, \ldots, M_n be the midpoints of the sides $A_1A_2, A_2A_3, \ldots, A_nA_1$, respectively, so each perpendicular bisector m_i passes through the midpoint M_i of the corresponding side. We will show that the perpendicular bisectors are all concurrent at O, and also that O is equidistant from all the midpoints M_i . The latter fact will be used in the solution to $\mathbf{3}$.

The line A_1M_1 falls across the lines ℓ_1 and m_1 , with the internal angles being less than a right angle (at A_1) and a right angle (at M_1) on the side of A_1A_2 that O is on. Since the sum of these internal angles is then less than two right angles, it follows by Postulate V that ℓ_1 and m_1 meet at some point P on the same side of A_1A_2 as O. Similar reasoning will show that m_1 and ℓ_2 will meet at some point Q on the same side of A_1A_2 as O. Since $|A_1M_1|=|A_2M_1|$ (because m_1 bisects A_1A_2), $\angle PA_1M_1=\angle QA_2M_1$ (because each is half of an equal internal angle of the polygon), and $\angle PM_1A_1=\angle QM_1A_2$ (because each is a right angle as m_1 is perpendicular to A_1A_2), it follows by the ASA congruence criterion (Proposition I-26), that $\triangle PA_1M_1\cong QA_2M_1$. This means that $|PM_1|=|QM_1|$. Since P and Q are both points on m_1 , on the same side of A_1A_2 as O, it follows that P=Q. Further, since ℓ_1 passes through P=Q and P=Q an

One can repeat the above reasoning for perpendicular bisector m_i of a side of the regular polygon, showing that they are all concurrent on O. Note that the triangles $\triangle OA_iM_i$ are all congruent to each other by the ASA congruence criterion (checking this is left to you!), so all the line segments OM_i are equal in length, *i.e.* O is equidistant from the midpoints of the sides of the given regular polygon.

3. Besides the regular polygon $A_1A_2...A_n$, what else is the point O a centre of? [2] SOLUTION. O is the centre of a circle passing through the vertices of the regular n-gon $A_1A_2...A_n$ because, as was shown in the solution to $\mathbf{1}$ above, O is the same distance from each vertex A_i . O is also the centre of a circle passing through the midpoints of the sides of the regular n-gon $A_1A_2...A_n$ because, as was shown in the solution to $\mathbf{2}$ above, O is an equal distance from each midpoint M_i .