Mathematics 2260H - Geometry I: Euclidean Geometry
 Trent University, Winter 2021
 Solutions to Assignment \#2 - Similarity
 Due on Friday, 29 January.

Two triangles are said to be similar if they have the same proportions, though not necessarily the same size. More formally, $\triangle A B C$ is similar to $\triangle D E F$, often written as $\triangle A B C \sim \triangle D E F$, if corresponding angles of the triangles are equal, i.e. $\angle A B C=\angle D E F$, $\angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$.

Similarity is a very useful tool that we will develop a little earlier than Euclid does in the Elements by using trigonometry. You may - and definitely should! - assume thoughout this assignment that the sum of the interior angles of a triangle is equal to two right angles. (Or a straight angle, or π radians, or 180°, or 200 gradians, or ... :-)

1. Prove the sine law for triangles, i.e. given any $\triangle A B C$,

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|}
$$

and the cosine law for triangles, i.e. given any $\triangle A B C$,

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C)
$$

Solution. We will go back to high school trigonometry to prove the Law of Sines. Suppose we are given $\triangle A B C$. Draw a line perpendicular to $B C$ from A, meeting (an extension of) $B C$ (if necessary) at D (Proposition I-12!), as in the diagram below.

Note that $\triangle A D B$ and $\triangle A D C$ are right triangles with $\angle A D C=\triangle A D B$ as the right angle(s). Note further that if $\angle A B C$ is obtuse, as in the given diagram, then, measuring angles in radians, $\angle A B D=\pi-\angle A B C$ and so $\sin (\angle A B C)=\sin (\pi-\angle A B C)=$ $\sin (\angle A B D)$. If $\angle A B C$ were to be acute instead, then $\angle A B D=\angle A B C$.

It follows that

$$
\begin{aligned}
& \sin (\angle A C B)=\sin (\angle A C D)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{|A D|}{|A C|} \\
& \sin (\angle A B C)=\sin (\angle A B D)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{|A D|}{|A B|}
\end{aligned}
$$

Thus $|A C| \sin (\angle A C B)=|A D|=|A B| \sin (\angle A B C)$. Dividing on both ends of the equation by $|A C| \cdot|A B|$ now gives us $\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|}$. A similar argument will show that $\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}$, completing the proof of the Law of Sines.

I really can't improve on the presentation of the standard trigonometric proof from the Wikipedia article about the Law of Cosines:

Using trigonometry [edit]

Dropping the perpendicular onto the side c through point C, an altitude of the triangle, shows (see Fig. 5)

$$
c=a \cos \beta+b \cos \alpha
$$

(This is still true if a or β is obtuse, in which case the perpendicular falls outside the triangle.) Multiplying through by c yields

$$
c^{2}=a c \cos \beta+b c \cos \alpha
$$

Considering the two other altitudes of the triangle yields
$a^{2}=a c \cos \beta+a b \cos \gamma$,

$$
b^{2}=b c \cos \alpha+a b \cos \gamma
$$

Adding the latter two equations gives

$$
a^{2}+b^{2}=a c \cos \beta+b c \cos \alpha+2 a b \cos \gamma
$$

Subtracting the first equation from the last one results in

$$
a^{2}+b^{2}-c^{2}=a c \cos \beta+b c \cos \alpha+2 a b \cos \gamma-(a c \cos \beta+b c \cos \alpha)
$$

which simplifies to

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

This proof uses trigonometry in that it treats the cosines of the various angles as quantities in their own right. It uses the fact that the cosine of an angle expresses the relation between the two sides enclosing that angle in any right triangle. Other proofs (below) are more geometric in that they treat an expression such as $a \cos \gamma$ merely as a label for the length of a certain line segment.
2. Show that if $\triangle A B C \sim \triangle D E F$, then $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. [2]

Solution. Suppose $\triangle A B C \sim \triangle D E F$. By definition, this means that $\angle A B C=\angle D E F$, $\angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$. By the Law of Sines we have

$$
\begin{aligned}
\frac{\sin (\angle B A C)}{|B C|} & =\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|} \\
\text { and } \frac{\sin (\angle E D F)}{|E F|} & =\frac{\sin (\angle D E F)}{|D F|}=\frac{\sin (\angle D F E)}{|D E|} .
\end{aligned}
$$

Inverting the former equation and multiplying it into the latter, we get

$$
\frac{\sin (\angle E D F)}{|E F|} \cdot \frac{|B C|}{\sin (\angle B A C)}=\frac{\sin (\angle D E F)}{|D F|} \cdot \frac{|A C|}{\sin (\angle A B C)}=\frac{\sin (\angle D F E)}{|D E|} \cdot \frac{|A B|}{\sin (\angle A C B)}
$$

Because the corresponding angles are equal, they cancel out, leaving us with

$$
\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}=\frac{|A B|}{|D E|},
$$

as required.
Note that it follows from 2 that if two triangles are similar and have one pair of corresponding sides equal, then the triangles are congruent. (Why?) [Answer: By one of the Angle-Side-Angle or Angle-Angle-Side congruence criteria, also known as Proposition I-26 between them.]
3. Show that if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [2]

Solution. Let $r=\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. By the Law of Cosines, we have

$$
\begin{aligned}
|B C|^{2} & =|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) \\
\text { and }|E F|^{2} & =|D E|^{2}+|D F|^{2}-2 \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) .
\end{aligned}
$$

Multiplying the latter equation by r^{2} yields:

$$
\begin{gathered}
r^{2}|E F|^{2}=r^{2}|D E|^{2}+r^{2}|D F|^{2}-2 r^{2} \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) \\
\Longrightarrow\left(\frac{|B C|}{|E F|}\right)^{2}|E F|^{2}=\left(\frac{|A B|}{|D E|}\right)^{2}|D E|^{2}+\left(\frac{|A C|}{|D F|}\right)^{2}|D F|^{2} \\
\\
-2 \cdot \frac{|A B|}{|D E|} \cdot \frac{|A C|}{|D F|} \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) \\
\Longrightarrow \\
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle E D F)
\end{gathered}
$$

It follows that

$$
\cos (\angle B A C)=\frac{|B C|^{2}-|A B|^{2}-|A C|^{2}}{-2 \cdot|A B| \cdot|A C|}=\cos (\angle E D F)
$$

Since the interior angles in a triangle are each between 0 and two right angles and the cosine function is $1-1$ on this domain, it follows that $\angle B A C=\angle E D F$. Similar arguments can be used to show that $\angle A B C=\angle D E F$ and $\angle A C B=\angle D F E$, so the triangles are similar, i.e. $\triangle A B C \sim \triangle D E F$, by definition.
4. Show that if $\angle B A C=\angle E D F$ and $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [2] Solution. Let $r=\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$. By the Law of Cosines, we have

$$
\begin{aligned}
|B C|^{2} & =|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) \\
\text { and }|E F|^{2} & =|D E|^{2}+|D F|^{2}-2 \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) .
\end{aligned}
$$

Multiplying the latter equation by r^{2} yields and using $\angle B A C=\angle E D F$:

$$
\begin{aligned}
r^{2}|E F|^{2}= & r^{2}|D E|^{2}+r^{2}|D F|^{2}-2 r^{2} \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F) \\
= & \left(\frac{|A B|}{|D E|}\right)^{2}|D E|^{2}+\left(\frac{|A C|}{|D F|}\right)^{2}|D F|^{2} \\
& -2 \cdot \frac{|A B|}{|D E|} \cdot \frac{|A C|}{|D F|} \cdot|D E| \cdot|D F| \cdot \cos (\angle B A C) \\
= & |A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) \\
= & |B C|^{2}
\end{aligned}
$$

It follows that $r^{2}=\frac{|B C|^{2}}{|E F|^{2}}$, and so $r=\frac{|B C|}{|E F|}=\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$. It now follows from 3 that the triangles are similar, i.e. $\triangle A B C \sim \triangle D E F$.
$\mathbf{3}$ is the Side-Side-Side similarity criterion and $\mathbf{4}$ is the Side-Angle-Side similarity criterion for triangles. 5 is a congruence problem in which similarity may be useful:
5. Determine whether the Angle-Angle-Side congruence criterion for triangles always works. That is, given that $\angle C A B=\angle F D E, \angle A B C=\angle D E F$, and $|B C|=|E F|$, does it necessarily follow that $\triangle A B C \cong \triangle D E F$? [1]

Solution. As noted above, Proposition I-26 includes both the Side-Angle-Side and Angle-Angle-Side congruence criteria, and has a proof in the Elements.

One could also prove the Angle-Angle-Side congruence criterion directly by observing that since the sum of the interior angles of any triangle is equal to right angles, it follows from the hypotheses that $\angle B A C=\angle E D F$, so $\triangle A B C \sim \triangle D E F$. Since the triangles are similar and $|B C|=|E F|$, we also have $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}=\frac{|B C|}{|E F|}=1$ by 2, so $|A B|=|D E|$ and $|A C|=|D F|$. Since the triangles have corresponding angles and sides equal, they are congruent by definition, i.e. $\triangle A B C \cong \triangle D E F$.

