Mathematics 2260H - Geometry I: Euclidean Geometry

Trent University, Winter 2021
Solution to Assignment \#1 - Hex-agony?
Due on Friday, 22 January.

1. Suppose one is given a circle and its centre in the Euclidean plane. Using the more complete version of Euclid's postulates given in the handout Euclids Postulates Extended, show how to construct a regular hexagon* inscribed ${ }^{\dagger}$ in the given circle. Make sure to explain why your construction works as part of the construction or separately. [10]

Solution. Finding a construction that works is relatively easy, and showing that it works is relatively hard. Here is one of a number of possible constructions. Before we begin, let us denote the centre of the circle by O.

1. Pick a point A on the circle and draw the radius $O A$ using Postulate I.
2. Use Proposition I-1 to construct an equilateral triangle $\triangle O A B$ on $O A$. Since the triangle is equilateral, $|O B|=|O A|=|A B|$, so B is also on the circle by the definition of a circle and $O B$ is also a radius.
3. Use Proposition I-1 to construct an equilateral triangle $\triangle O B C$ on $O B$. Since the triangle is equilateral, $|O C|=|O B|=|B C|$, so C is also on the circle by the definition of a circle and $O C$ is also a radius.

[^0]\dagger A polygon is inscribed in a circle if all of its vertices are on the circle.
4. Use Proposition I-1 to construct an equilateral triangle $\triangle O C D$ on $O C$. Since the triangle is equilateral, $|O D|=|O C|=|C D|$, so D is also on the circle by the definition of a circle and $O D$ is also a radius.
5. Use Proposition I-1 to construct an equilateral triangle $\triangle O D E$ on $O D$. Since the triangle is equilateral, $|O E|=|O D|=|D E|$, so E is also on the circle by the definition of a circle and $O E$ is also a radius.
6. Use Proposition I-1 to construct an equilateral triangle $\triangle O E F$ on $O E$. Since the triangle is equilateral, $|O F|=|O E|=|E F|$, so F is also on the circle by the definition of a circle and $O F$ is also a radius.
7. Draw the line segment $F A$ using Postulate I.

We claim that $A B C D E F$ is a regular hexagon inscribed the given circle.
The hexagon $A B C D E F$ is inscribed in the given circle because all six vertices are on the circle, as noted in the course of the construction above. It remains to show that $A B C D E F$ is a regular hexagon.

Note that the five triangles $\triangle O A B, \triangle O B C, \triangle O C D, \triangle O D E$, and $\triangle O E F$, are all equilateral triangles with the same side length, equal to the radius of the circle. It follows by the Side-Side-Side congruence criterion, i.e. Proposition I-8, that all five triangles are congruent to each other and hence all have the same interior angles too.

So far as the sides are concerned, we are most of the way there because $|A B|=|B C|=$ $|C D|=|D E|=|E F|$, by the construction, since each is equal to a radius of the given circle. We still need to show that $F A$ has the same length.

So far as the interior angles are concerned, we are also most of the way there since each of $\angle A B C=\angle A B O+\angle O B C, \angle B C D=\angle B C O+\angle O C D, \angle C D E=\angle C D O+\angle O D E$, and $\angle D E F=\angle D E O+\angle O E F$ is equal to the sum of two (equal) interior angles of the congruent equilateral triangles, and hence are all equal to each other. We still need to show that $\angle E F A$ and $\angle F A B$ are equal to the other four interior angles.

The key to completing the job will be to show that $\triangle O F A$ is congruent to each of the five equilateral triangles we constructed. It will then immediately follow that $A F$ has the same length as the other five sides of the hexagon, and that $\angle E F A=\angle E F O+\angle O F A$ and $\angle F A B=\angle F A O+\angle O A B$ are equal to the other four interior angles.

However, showing that $\triangle O F A$ is an equilateral triangle congruent to the five we constructed requires using Postulate V or a suitable equivalent. The equivalent we will use here is the assertion that the sum of the interior angles of a triangle is equal to two right angles, i.e. a straight angle. (This is a commonplace fact in standard trigonometry, so it should at least be familiar, even if we haven't gotten to it in the Elements yet.) Applied to an equilateral triangle, in which all three interior angles are equal, this means that the interior angles at each vertex is one third of a straight angle (or two thirds of a right angle). It follows that $\angle C O F=\angle C O D+\angle D O E+\angle E O F$ and $\angle D O A=\angle A O C+\angle C O B+\angle B O A$ are both straight angles, so $C O E$ and $D O A$ are straight lines. It follows by the Opposite Angles Theorem (Proposition I-15) that $\angle A O F=\angle C O D$. Since we have $|O C|=|O F|$ and $|O D|=|O A|$, it follows by the Side-Angle-Side congruence criterion (Proposition I-4) that $\triangle O F A$ is congruent to $\triangle O C D$ and hence also the other four equilateral triangles.

This completes the proof.
Bonus. Construct a regular hexagon without using anything equivalent to Postulate V and without looking it up. [$+1 \%$ on your final mark]

[^0]: * A regular polygon is a polygon in which all the sides are the same length and all the interior angles are equal to each other.

