Mathematics $2260 H$ - Geometry I: Euclidean Geometry Trent University, Winter 2021
 Assignment \#9 - Cevianity
 Due on Friday, 26 March.

1. Use Ceva's Theorem to show that the medians of a triangle are concurrent. [1]
2. Suppose that T, U, and V are the points where the incircle of $\triangle A B C$ touches the sides $B C, A C$, and $A B$, respectively. Show that the cevians $A T, B U$, and $C V$ are concurrent. [2]
3. Suppose P, Q, and R are points on the sides (not their extensions) of the sides $B C$, $A C$, and $A B$ of $\triangle A B C$. Determine whether it is true that the cevians $A P, B Q$, and $C R$ are concurrent if and only if $\frac{\sin (\angle A C R)}{\sin (\angle R C B)} \cdot \frac{\sin (\angle B A P)}{\sin (\angle P A C)} \cdot \frac{\sin (\angle C B Q)}{\sin (\angle Q B A)}=1$. [7]
