Mathematics 2260H – Geometry I: Euclidean Geometry TRENT UNIVERSITY, Winter 2021 Assignment #3 – A centre for a regular n-gon Due on Friday, 5 February.

Recall that a regular polygon is one with all sides of equal length and all internal angles equal. A polygon with n sides is often referred to as an n-gon.^{*} In what follows, suppose $A_1A_2...A_n$ is a regular n-gon in the Euclidean plane for some $n \geq 3$.

- **1.** Let ℓ_1, ℓ_2, \ldots , and ℓ_n be the lines bisecting (*i.e.* cutting in half) the interior angles at A_1, A_2, \ldots , and A_n , respectively, of the regular *n*-gon $A_1A_2 \ldots A_n$. Show that ℓ_1, ℓ_2, \ldots , and ℓ_n are *concurrent*, that is meet at a common point *O*. [4]
- 2. Let m_1, m_2, \ldots , and m_n be the perpendicular bisectors (*i.e.* lines cutting in half at a right angle) of the sides A_1A_2, A_2A_3, \ldots , and A_nA_1 , respectively, of the regular *n*-gon $A_1A_2 \ldots A_n$. Show that m_1, m_2, \ldots , and m_n are concurrent also concurrent at the point O in question 1. [4]
- **3.** Besides the regular polygon $A_1 A_2 \ldots A_n$, what else is the point O a centre of? [2]

^{*} For small n we have common names: triangle, quadrilateral, pentagon, and so on. Note that in the Euclidean and hyperbolic planes an n-gon with positive area must have $n \ge 2$, but in the elliptic plane there are 2-gons ("biangles"?) with positive area.