Mathematics $2260 H$ - Geometry I: Euclidean Geometry Trent University, Winter 2021
 Assignment \#3 - A centre for a regular \boldsymbol{n}-gon
 Due on Friday, 5 February.

Recall that a regular polygon is one with all sides of equal length and all internal angles equal. A polygon with n sides is often referred to as an n-gon.* In what follows, suppose $A_{1} A_{2} \ldots A_{n}$ is a regular n-gon in the Euclidean plane for some $n \geq 3$.

1. Let $\ell_{1}, \ell_{2}, \ldots$, and ℓ_{n} be the lines bisecting (i.e. cutting in half) the interior angles at A_{1}, A_{2}, \ldots, and A_{n}, respectively, of the regular n-gon $A_{1} A_{2} \ldots A_{n}$. Show that ℓ_{1}, ℓ_{2}, \ldots, and ℓ_{n} are concurrent, that is meet at a common point O. [4]
2. Let m_{1}, m_{2}, \ldots, and m_{n} be the perpendicular bisectors (i.e. lines cutting in half at a right angle) of the sides $A_{1} A_{2}, A_{2} A_{3}, \ldots$, and $A_{n} A_{1}$, respectively, of the regular n-gon $A_{1} A_{2} \ldots A_{n}$. Show that m_{1}, m_{2}, \ldots, and m_{n} are concurrent also concurrent at the point O in question 1. [4]
3. Besides the regular polygon $A_{1} A_{2} \ldots A_{n}$, what else is the point O a centre of? [2]
[^0]
[^0]: * For small n we have common names: triangle, quadrilateral, pentagon, and so on. Note that in the Euclidean and hyperbolic planes an n-gon with positive area must have $n \geq 2$, but in the elliptic plane there are 2-gons ("biangles"?) with positive area.

