Mathematics $2260 H$ - Geometry I: Euclidean Geometry
 Trent University, Winter 2021

Assignment \#2 - Similarity

Due on Friday, 29 January.
Two triangles are said to be similar if they have the same proportions, though not necessarily the same size. More formally, $\triangle A B C$ is similar to $\triangle D E F$, often written as $\triangle A B C \sim \triangle D E F$, if corresponding angles of the triangles are equal, i.e. $\angle A B C=\angle D E F$, $\angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$.

Similarity is a very useful tool that we will develop a little earlier than Euclid does in the Elements by using trigonometry. You may - and definitely should! - assume thoughout this assignment that the sum of the interior angles of a triangle is equal to two right angles. (Or a straight angle, or π radians, or 180°, or 200 gradians, or \ldots :-)

1. Prove the sine law for triangles, i.e. given any $\triangle A B C$,

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle A C B)}{|A B|},
$$

and the cosine law for triangles, i.e. given any $\triangle A B C$,

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C)
$$

2. Show that if $\triangle A B C \sim \triangle D E F$, then $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. [2]

Note that it follows from 2 that if two triangles are similar and have one pair of corresponding sides equal, then the triangles are congruent. (Why?)
3. Show that if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [2]
4. Show that if $\angle B A C=\angle E D F$ and $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [2]

3 is the Side-Side-Side similarity criterion and $\mathbf{4}$ is the Side-Angle-Side similarity criterion for triangles. 5 is a congruence problem in which similarity may be useful:
5. Determine whether the Angle-Angle-Side congruence criterion for triangles always works. That is, given that $\angle C A B=\angle F D E, \angle A B C=\angle D E F$, and $|B C|=|E F|$, does it necessarily follow that $\triangle A B C \cong \triangle D E F$? [1]

