Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2014

 Quizzes

 Quizzes}

Quiz \#0. Friday, 10 January, 2014 [15 minutes]
A baby plane geometry, which we'll call Quattro, is defined as follows:

- Quattro has exactly four points.
- Any two points of Quattro are connected by exactly one line of Quattro.
- Every line of Quattro has only two points of Quattro on it.

1. Draw a picture of Quattro. [2]
2. How many lines does Quattro have? [1.5]
3. How many triangles are there in Quattro? [1.5]

Bonus: What geometry do you think Quattro would want to be when all grown up? [0.5]
Quiz \#1. Friday, 17 January, 2014 [10 minutes]

1. Three lines in the hyperbolic plane divide up the hyperbolic plane into a number of regions. What are the possible values of this number? Illustrate each possibility. [5]

Quiz \#2. Friday, 24 January, 2014 [10 minutes]

1. Show that, given a line $A B$, there is a line $C D$ such that $|C D|=3|A B|$ Justify each step in your construction using Euclid's five Postulates (plus, if necessary, Postulates A and S). [5]

Quiz \#3. Friday, 31 January, 2014 [10 minutes]

1. Show that the Angle-Side-Side (ASS) congruence criterion does not work in general. That is, find triangles $\triangle A B C$ and $\triangle D E F$ such that $\angle A B C=\angle D E F,|A B|=|D E|$, and $|A C|=|D F|$, but $\triangle A B C \nsubseteq \triangle D E F$. [5]

Quiz \#4. Friday, 7 February, 2014 [15 minutes]
Suppose ABCD is a quadrilateral such that $|A B|=|C D|$ and $|A D|=|C B|$, and let E be the point of intersection of the diagonals $A C$ and $B D$, as in the diagram below.

1. Show that $\triangle A B C \cong \triangle C D A$ and $\triangle A B D \cong \triangle C D B$. [2]
2. Show that E is the midpoint of the diagonals $A C$ and of $B D$. [3]

Note/Hint: You may us the Angle-Side-Angle congruence criterion for triangles in your solution to question 2 .

Quiz \#5. Friday, 14 February, 2014 [10 minutes]
Suppose ABCD is a quadrilateral such that $|A B|=|C D|$ and $|A D|=|B C|$, as in the diagram below.

1. Show that $A B \| C D$ and $A D \| B C$. [5]

Quiz \#6. Friday, 28 February, 2014 [10 minutes]
Suppose A and D are points on the same side of $B C$ and such that the point of intersection, E, of $A C$ and $B D$ is the midpoint of both $A C$ and $B D$, as in the diagram below.

1. Show that $\triangle A B C$ and $\triangle D B C$ have equal areas. [5]

Quiz \#7. Friday, 7 March, 2014 [10 minutes]
Suppose $\triangle A B C$ has an obtuse angle at B and the altitude from A meets (the extension of) $B C$ at D, as in the diagram below.

1. Show that if $|A C|^{2}=|A B|^{2}+3|B C|^{2}$, then $|D B|=|B C|$. [5]

Quiz \#8. Friday, 14 March, 2014 [10 minutes]

1. Suppose $A B$ and $C D$ are two chords of a circle with centre O such that $|A B|=|C D|$, as in the diagram below.

Show that $A B$ and $C D$ are the same distance from O. [5]
Quiz \#9. Friday, 21 March, 2014 [10 minutes]

1. Suppose $\triangle A B C$ is equilateral, with sides 4 shazbats long. Let E be the point between B and C which is 3 shazbats from B, F be the midpoint of $A C$, and D be the point where $E F$ meets $A B$.

Determine $|A D|$. [5]
Quiz \#10. Friday, 28 March, 2014 [10 minutes]

1. Suppose $A R$ is a line segment with midpoint B, and $A Q$ is another line segment with midpoint C, meeting the first line segment at A. Let X be the point of intersection of $Q B$ and $R C$, and let P be the point of intersection of $A X$ and $B C$.

Show that P is the midpoint of $B C$. [5]

Quiz \#11. Friday, 4 April, 2014 [10 minutes]

1. Suppose that the Euler line of $\triangle A B C$ is also the angle bisector of $\angle B A C$. Show that $\triangle A B C$ is isosceles. [5]
