
Mathematics 2260H – Geometry I: Euclidean geometry
Trent University, Winter 2014

Solutions to the Quizzes

Quiz #0. Friday, 10 January, 2014 [15 minutes]

A baby plane geometry, which we’ll call Quattro, is defined as follows:

• Quattro has exactly four points.
• Any two points of Quattro are connected by exactly one line of Quattro.
• Every line of Quattro has only two points of Quattro on it.

1. Draw a picture of Quattro. [2]
2. How many lines does Quattro have? [1.5]
3. How many triangles are there in Quattro? [1.5]

Bonus: What geometry do you think Quattro would want to be when all grown up? [0.5]

Solutions. 1. Here are two slightly different pictures of Quattro:

The one on the left is a likely first attempt for many people, and can be a little tricky to
use if one forgets that the diagonal lines do not have a point of intersection in Quattro.
The one on the right avoids this problem and makes it very easy to count the lines and
triangles of Quattro. �

2. Quattro has
(
4
2

)
= 6 lines. �

3. Quattro has
(
4
3

)
= 4 triangles. �

Bonus: I think Quattro wants to be three-dimensional as a grown-up. Note that Quattro’s
points and lines have the same structure as the vertices and edges of a tetrahedron (three-
sided pyramid) . . . �
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Quiz #1. Friday, 17 January, 2014 [15 minutes]

1. Three lines in the hyperbolic plane divide up the hyperbolic plane into a number of
regions. What are the possible values of this number? Illustrate each possibility. [5]

Solution. 4, 5, 6, and 7 are the possible number of regions the hyperbolic plane can be
divided into by three lines, illustrated below using the Poincaré half-plane model of the
hyperbolic plane. The key is to consider how the lines can intersect:

i. If the three lines do not intersect at all, they partition the hyperbolic plane into four
(4) regions.

ii. If two of the three lines intersect, but neither intersects the third line, the three lines
partition the hyperbolic plane into five (5) regions. [This is the case that can’t happen
in the Euclidean plane, where there is only one parallel line passing through a given
point that is parallel to a given line.]

iii. If two of the lines do not intersect, but the third intersects each of the other two, the
three lines partition the hyperbolic plane into six (6) regions.

iv. If all three of the lines intersect in a single point, they partition the hyperbolic plane
into six (6) regions.

v. If each the three lines intersects both of the others at different points (so they form a
triangle), they partition the plane into seven (7) regions.

�

NOTE: You can’t partition the hyperbolic [or Euclidean] plane into three or fewer regions using three
different lines. A single line partitions the plane into two regions, adding a second line partitions at least
one of those regions into two for a total of at least three, and adding a third line partitions at least one
of those regions into two for a total of at least four. Moreover, you can’t partition the hyperbolic [or
Euclidean] plane into eight or more regions using three different lines. Since the best each line added
could do is divide each existing region into two parts, three lines could not hope to divide the plane into
more than 23 = 8 regions. In the hyperbolic [and Euclidean] plane, they can’t even achieve eight: in the
case where two lines partition the plane into four pieces, they must intersect at a point. A third line may
intersect the first two away from the point, cutting three of the four previous regions into two, for a total
of seven, as in case v above. However, to cut the fourth previous region into two to make a total of eight
regions, the third line would have to cross one of the previous two in a second point, which can’t happen
in the hyperbolic [or Euclidean] plane. (It can happen in spherical geometry, but some of the other cases
above can’t happen there.)
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Quiz #3. Friday, 31 January, 2014 [10 minutes]

1. Show that the Angle-Side-Side (ASS) congruence criterion does not work in general.
That is, find triangles 4ABC and 4DEF such that ∠ABC = ∠DEF , |AB| = |DE|,
and |AC| = |DF |, but 4ABC � 4DEF . [5]

Solution. The picture says it all, I think:

�

Quiz #4. Friday, 7 February, 2014 [15 minutes]

Suppose ABCD is a quadrilateral such that |AB| = |CD| and |AD| = |CB|, and let
E be the point of intersection of the diagonals AC and BD, as in the diagram below.

1. Show that 4ABC ∼= 4CDA and 4ABD ∼= 4CDB. [2]

2. Show that E is the midpoint of the diagonals AC and of BD. [3]

Note/Hint: You may us the Angle-Side-Angle congruence criterion for triangles in your
solution to question 2.

Solution to 1. We are given that |AB| = |CD| and |AD| = |CB|. Since |AC| = |CA| –
the common notions strike again! – it follows by the Side-Side-Side congruence criterion
(Proposition I.8) that 4ABC ∼= 4CDA. Similarly, since |BD| = |DB|, it also follows by
the Side-Side-Side congruence criterion that 4ABD ∼= 4CDB. �

Solution to 2. Since 4ABC ∼= 4CDA (as shown above), it follows that ∠BAE =
∠BAC = ∠DCA = ∠DCE, and since 4ABD ∼= 4CDB (also shown above), it also
follows that ∠EBA = ∠DBA = ∠BDC = ∠EDC. Since |AB| = |CD| was given, it
follows by the Angle-Side-Angle congruence criterion (Proposition I.26) that 4ABE ∼=
4CDE. This, in turn, implies that |AE| = |CE| and |BE| = |DE|, so E is the midpoint
of both AC and BD, as required. �
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Quiz #5. Friday, 14 February, 2014 [10 minutes]

Suppose ABCD is a quadrilateral such that |AB| = |CD| and |AD| = |BC|, as in the
diagram below.

1. Show that AB ‖ CD and AD ‖ BC. [5]

Solution. We are given that |AB| = |CD| and |AD| = |CB|. Connect A to C. Since
|AC| = |CA|, it follows by the Side-Side-Side congruence criterion (Proposition I.8) that
4ABC ∼= 4CDA. [This was just the solution to problem 1 on Quiz #4 all over again.]
It follows that ∠BAC = ∠DCA and ∠DAC = ∠BCA.

Since ∠BAC = ∠DCA, Proposition I.28 [the half of the Z Theorem that does not
need Postulate V] implies that AB ‖ CD. Similarly, since ∠DAC = ∠BCA, Proposition
I.28 implies that AD ‖ BC. �

Quiz #6. Friday, 28 February, 2014 [10 minutes]

Suppose A and D are points on the same side of BC and such that the point of
intersection, E, of AC and BD is the midpoint of both AC and BD, as in the diagram
below.

1. Show that 4ABC and 4DBC have equal areas. [5]

Solution. There are several ways to do this, among which we choose the following brutally
simplemided approach.

We are given that |AE| = |CE| and |BE| = |DE|; we also have ∠AEB = ∠CED
since they are opposite angles. It follows by the Side-Angle-Side (SAS) congruence criterion
that 4AEB ∼= 4CED, and so these two triangles must have equal areas. Now

area (4ABC) = area (4AEB) + area (4BEC)

= area (4CED) + area (4BEC) = area (4DBC) ,

as desired. �
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Quiz #7. Friday, 7 March, 2014 [10 minutes]

Suppose4ABC has an obtuse angle at B and the altitude from A meets (the extension
of) BC at D, as in the diagram below.

1. Show that if |AC|2 = |AB|2 + 3|BC|2, then |DB| = |BC|. [5]

Solution. Since AD is an altitude, ∠ADB = ∠ADC is a right angle, so both 4ADB
and 4ADC are right triangles. It follows by the Pythagorean Theorem that

|AB|2 = |AD|2 + |DB|2 and |AC|2 = |AD|2 + |DC|2 ,

and we are given that |AC|2 = |AB|2 + 3|BC|2. Hence

|AB|2 + 3|BC|2 = |AC|2 = |AD|2 + |DC|2 = |AD|2 + (|DB|+ |BC|)2

= |AD|2 + |DB|2 + 2|DB| · |BC|+ |BC|2

= |AB|2 + 2|DB| · |BC|+ |BC|2 ,

and so
2|DB| · |BC| = |AB|2 + 3|BC|2 − |AB|2 − |BC|2 = 2|BC|2 .

Solving for |DB|, we get

|DB| = 2|BC|2

2|BC|
= |BC| ,

as desired. �
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Quiz #8. Friday, 14 March, 2014 [10 minutes]

1. Suppose AB and CD are two chords of a circle with centre O such that |AB| = |CD|,
as in the diagram below.

Show that AB and CD are the same distance from O. [5]

Solution 1. (Brief and correct, but not very filling.) Connect each of A, B, C, and D
to the centre O. |AO| = |BO| = |CO| = |DO| since they are all radii of the circle. As
it was given that |AB| = |CD|, it follows by the Side-Side-Side congruence criterion that
4OAB ∼= 4OCD. Hence the corresponding sides AB and CD must be the same distance
from the opposite vertex, which is O in each case. �

Solution 2. (More explicit, at least!) Connect each of A, B, C, and D to the centre O.
|AO| = |BO| = |CO| = |DO| since they are all radii of the circle. As it was given that
|AB| = |CD|, it follows by the Side-Side-Side congruence criterion that 4OAB ∼= 4OCD.
Let P and Q be the points where the altitudes from O meet AB and CD respectively.

OP and OQ are each parts of radii that meet the chords AB and CD at right angles, so it
follows by Proposition III.3 that P and Q are the midpoints of AB and CD, respectively,
and so |AP | = 1

2 |AB| = 1
2 |CD| = |CQ|. As noted above, |AO| = |CO|, and because

4OAB ∼= 4OCD, we also have that ∠OAP = ∠OCQ. Hence, by the Side-Angle-Side
congruence criterion, 4OAP = 4OCQ, and thus |OP | = |OQ|. Since the perpendicular
from a given point to a line meets the line at the nearest point on that line to the given point
(Proposition 2.3.24 in the text, oddly never explicitly stated by Euclid in the Elements),
it follows that the (nearest!) distances from O to AB and CD are equal. �

6



Quiz #9. Friday, 21 March, 2014 [10 minutes]

1. Suppose 4ABC is equilateral, with sides 4 shazbats long. Let E be the point between
B and C which is 3 shazbats from B, F be the midpoint of AC, and D be the point
where EF meets AB.

Determine |AD|. [5]

Solution. Since |AB| = |BC| = |CA| = 4, |BE| = 3 implies that |EC| = 4− 1 = 3, and
the fact that F is the midpoint of AC implies that |CF | = |FC| = 4

2 = 2. As D, E, and
F are on the same line, namely EF , it follows from Menelaus’ Theorem that

−1 =
AD

DB
· BE

EC
· CF

FA
=
−|AD|
|DB|

· |BE|
|EC|

· |CF |
|FA|

=
−|AD|
|DB|

· 3

1
· 2

2
= −3

|AD|
|DB|

,

where we choose AB, BC, and CA to be the positive orientations of the sides, so, in
particular, AD = −|AD|. This means that

3|AD| = |DB| = |AD|+ |AB| = |AD|+ 4 =⇒ 2|AD| = 4 =⇒ |AD| = 4

2
= 2 .

Thus |AD| = 2 shazbats. �
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Quiz #10. Friday, 28 March, 2014 [10 minutes]

1. Suppose AR is a line segment with midpoint B, and AQ is another line segment with
midpoint C, meeting the first line segment at A. Let X be the point of intersection
of QB and RC, and let P be the point of intersection of AX and BC.

Show that P is the midpoint of BC. [5]

Solution. Consider 4ABC. R is on (an extension of) side AB, Q is on (an extension
of) side AC, and P is on the side BC of this triangle. Note that AP , BQ, and CR are

concurrent at X. It follows by Ceva’s Theorem that
AR

RB
· BP

PC
· CQ

QA
= +1, using the

convention that reversing the direction of a line segment changes its sign. Since B is the
midpoint of AR, AR = −2RB, and since C is the midpoint of AQ, QA = −2CQ. Plugging
these into the equation from Ceva’s Theorem gives us

+1 =
AR

RB
· BP

PC
· CQ

QA
=
−2RB

RB
· BP

PC
· CQ

−2CQ
= (−2) · BP

PC
·
(
−1

2

)
=

BP

PC
.

Thus BP = PC, so P must be between B and C and equidistant from B and C, i.e. P is
the midpoint of BC. �

Quiz #11. Friday, 4 April, 2014 [10 minutes]

1. Suppose that the Euler line of 4ABC is also the angle bisector of ∠BAC. Show that
4ABC is isosceles. [5]

Solution. If the Euler line of 4ABC is also the angle bisector of ∠BAC, it will meet BC
at some point D between B and C. Since it is an angle bisector, we have that ∠BAD =
∠CAD. On the other hand, if it is the Euler line, it passes through the orthocentre
of 4ABC and, since it also passes through A, it must be the altitude from A. Thus
∠ADB = ∠ADC are right angles. As |AD| = |AD|, it follows by the Angle-Side-Angle
(ASA) congruence criterion that 4ADB ∼= 4ADC, and hence that |AB| = |AC|, i.e.
4ABC is isosceles. �
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