Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2014

Take-Home Final Examination
Due on Friday, 18 April, 2014.
Instructions: Do both of parts Δ and \square, and, if you wish, part \bigcirc as well. Show all your work. You may use your textbooks and notes, as well as any handouts and returned work, from this and any other courses you have taken or are taking now. You may also ask the instructor to clarify the statement of any problem, and use calculators or computer software to do numerical computations and to check your algebra. However, you may not consult any other sources, nor consult or work with any other person on this exam.

Part \triangle. Do all of problems $1-4 . \quad[40=4 \times 10$ each]

1. Suppose H is the orthocentre of $\triangle A B C$. Show that C is the orthocentre of $\triangle A B H$.

2. Suppose the chords $A B$ and $C D$ of a circle with centre O intersect at a point P that is not on the circle. Show that:
a. $\angle A P C=\frac{1}{2}(\angle A O C+\angle B O D)$ if P is inside the circle. [5]
b. $\angle A P C=\frac{1}{2}(\angle A O C-\angle B O D)$ if P is outside the circle. [5]

3. Suppose a line segment $P Q$ is given. Give a detailed construction using Euclid's system, as augmented in the textbook, of points A, B, C, and D between P and Q such that $|P A|=|A B|=|B C|=|C D|=|D Q|$.
4. Consider the following axioms:
I. Any two points are on an unique line.
II. Any two lines have an unique point in common.
III. There are four points such that no three are on the same line.

Find as many essentially different examples of configurations of points and lines that satisfy axioms I and II, but do not satisfy axiom III, as you can.
[The axioms given above are those for a projective plane; configurations satisfying I and II, but not III, are called degenerate planes.]

Part \square. Do any four (4) of problems 5-10. $\quad[40=4 \times 10$ each] Please draw the relevant pictures in each case!
5. Suppose O is the circumcentre of $\triangle A B C$ and points X, Y, and Z are chosen so that $B C$ is the perpendicular bisector of $O X, A C$ is the perpendicular bisector of $O Y$, and $A B$ is the perpendicular bisector of $O Z$. Show that $\triangle X Y Z \cong \triangle A B C$.
6. A chord $P Q$ of a circle is tangent to a smaller circle with the same centre. Assuming that $|P Q|=4 \mathrm{~cm}$, find the area of the region between the two circles.
7. Suppose $\triangle A B C$ has a right angle at C and let $C D$ be the altitude from C of this triangle. Let r, q, and p be the radii of the incircles of $\triangle A B C, \triangle C A D$, and $\triangle C B D$, respectively. Show that $r+q+p=|C D|$
8. Suppose A, B, C, D, E, and F are points on a circle, arranged clockwise. Let U be the intersection of $A E$ and $B F, V$ be the intersection of $A D$ and $C F$, and W be the intersection of $B D$ and $C E$. Show that U, V, and W are collinear.
9. Join each vertex of $\triangle A B C$ to the points dividing the opposite side into equal thirds and let X, Y, and Z be the points of intersection of the pairs of these lines closest to $B C, A C$, and $A B$, respectively. Show that the sides $\triangle X Y Z$ are parallel to corresponding sides of $\triangle A B C$ and that $\triangle X Y Z \sim \triangle A B C$.
10. Suppose $A B C D$ is a cyclic quadrilateral, i.e. A, B, C, and D are points on a circle, given in order going around the circle. Show that if we join each of A, B, C, and D to the orthocentre of the triangle formed by the other three, then the resulting line segments all intersect in a common midpoint M.

$$
[\text { Total }=80]
$$

Part \bigcirc. Bonus!
0. Write an original poem about geometry. [1]
00. Give an example of two triangles $\triangle A B C$ and $\triangle D E F$ which are not congruent, but which nevertheless have the same centroid G, orthocentre H, incentre I, and circumcentre O. [1]

