Mathematics $2260 H$ - Geometry I: Euclidean geometry

Trent University, Winter 2013

Solution to Assignment \#9

 A circle flutters by ...The following is a classic result in Euclidean geometry:

The Butterfly Theorem. Suppose M is the midpoint of a chord $P Q$ of a circle and $A B$ and $C D$ are two other chords that pass through M. Let $A D$ and $B C$ intersect $P Q$ at X and Y, respectively. Then M is also the midpoint of $X Y$.

1. Prove the Butterfly Theorem. [10]

Hint: You know a lot about angles in a circle, and about triangles, and also ...
Solution. Draw perpendiculars from X to $A B$, meeting $A B$ at S, from X to $C D$, meeting $C D$ at T, from Y to $A B$, meeting $A B$ at U, and from Y to $C D$, meeting $C D$ at V. (See the diagram above!) This yields a wealth of similar triangles, and hence of common ratios of sides:

- $\angle X M S=\angle Y M U$ since they are opposite angles, and $\angle X S M=\angle Y U M$ since both are right angles, so $\triangle X S M \sim \angle Y U M$ by the A-A similarity criterion. It follows in particular that $\frac{|X M|}{|Y M|}=\frac{|X S|}{|Y U|}$.
- $\angle X M T=\angle Y M V$ since they are opposite angles, and $\angle X T M=\angle Y V M$ since both are right angles, so $\triangle X T M \sim \angle Y V M$ by the A-A similarity criterion. It follows in particular that $\frac{|X M|}{|Y M|}=\frac{|X T|}{|Y V|}$.
- $\angle X A S=\angle Y C V$ since $\angle D A B=\angle X A S$ and $\angle B C D=\angle Y C V$ both subtend the same arc of the circle, and $\angle A S X=\angle C V Y$ since both are right angles, so $\triangle A S X \sim$ $\angle C V Y$ by the A-A similarity criterion. It follows in particular that $\frac{|X S|}{|Y V|}=\frac{|A X|}{|C Y|}$.
- $\angle X D T=\angle Y B U$ since $\angle A D C=\angle X D T$ and $\angle C B A=\angle Y B U$ both subtend the same arc of the circle, and $\angle D T X=\angle B U Y$ since both are right angles, so $\triangle D T X \sim$ $\angle B U Y$ by the A-A similarity criterion. It follows in particular that $\frac{|X T|}{|Y U|}=\frac{|D X|}{|B Y|}$.
We will also require the following fact:
Lemma. If two chords $A B$ and $C D$ of a circle intersect in a point P, then $|A P| \cdot|P B|=|C P| \cdot|P D|$.
The case where P is outside the circle was the question on Quiz \#8. It's to left you to check that it works for a point P inside the circle ...

Here we go, using the various relations noted above:

$$
\begin{aligned}
\frac{|X M|^{2}}{|Y M|^{2}} & =\frac{|X M|}{|Y M|} \cdot \frac{|X M|}{|Y M|}=\frac{|X S|}{|Y U|} \cdot \frac{|X T|}{|Y V|}=\frac{|X S|}{|Y V|} \cdot \frac{|X T|}{|Y U|}=\frac{|A X|}{|C Y|} \cdot \frac{|D X|}{|B Y|} \\
& =\frac{|A X| \cdot|X D|}{|C Y| \cdot|Y B|}=\frac{|P X| \cdot|X Q|}{|P Y| \cdot|Y Q|}=\frac{(|P M|-|X M|) \cdot(|Q M|+|X M|)}{(|P M|+|Y M|) \cdot(|Q M|-|Y M|)} \\
& =\frac{(|P M|-|X M|) \cdot(|P M|+|X M|)}{(|P M|+|Y M|) \cdot(|P M|-|Y M|)}=\frac{|P M|^{2}-|X M|^{2}}{|P M|^{2}-|Y M|^{2}}
\end{aligned}
$$

Cross-multiplying the first and last expressions in the chain of equalities gives:

$$
|X M|^{2}|P M|^{2}-|X M|^{2}|Y M|^{2}=|Y M|^{2}|P M|^{2}-|Y M|^{2}|X M|^{2}
$$

Thus $|X M|^{2}|P M|^{2}=|Y M|^{2}|P M|^{2}$, so $|X M|^{2}=|Y M|^{2}$, and hence $|X M|=|Y M|$. It follows that M is the midpoint of $X Y$, as desired.

Note: The proof given above is basically the one given on pp. 45-46 of Geometry Revisited, by H.S.M. Coxeter and S.L. Greitzer, New Mathematical Library Vol. 19, Random House, 1967. The authors say they received this proof from a "Dr. Zoll of Newark State College." This proof is pretty common nowadays, probably because it is pretty basic in the tools it requires; e.g. the Wikipedia article on the Butterfly Theorem gives a version of it.

