Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013

Solutions to Assignment \#5

Triggy business with similarity
Recall from the previous assignment that $\triangle A B C$ and $\triangle D E F$ are similar, denoted by $\triangle A B C \sim \triangle D E F$, if the ratios of the lengths of corresponding sides are all the same, that is, if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$.

Two handy facts about triangles, if one has trigonometry in hand, are:
The Law of Sines: In any triangle $\triangle A B C$,

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A C B)}{|A B|}=\frac{\sin (\angle A B C)}{|A C|} .
$$

and
The Law of Cosines: In any triangle $\triangle A B C$,

$$
|A C|^{2}=|A B|^{2}+|B C|^{2}-2 \cdot|A B| \cdot|B C| \cdot \cos (\angle A B C) .
$$

You may use these laws, and whatever else you know or learn about the trigonometric functions, to help do the following problems.

1. Show that if $\angle B A C=\angle E D F$ and $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [4]

Note: That is, show that a Side-Angle-Side (SAS) similarity criterion for triangles works. Solution. We will use the Law of Cosines twice to help:

$$
\begin{aligned}
|B C|^{2}= & |A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle A B C) \\
& \quad \text { (By the Law of Cosines.) } \\
= & {\left[|A C| \cdot \frac{|D E|}{|D F|}\right]^{2}+|A C|^{2}-2 \cdot\left[|A C| \cdot \frac{|D E|}{|D F|}\right] \cdot|A C| \cdot \cos (\angle E D F) } \\
& \quad\left(\text { Since } \frac{|A B|}{|D E|}=\frac{|A C|}{|D F|} \Longrightarrow|A B|=|A C| \cdot \frac{|D E|}{|D F|} \text { and } \angle B A C=\angle E D F .\right) \\
= & |A C|^{2} \cdot \frac{|D E|^{2}}{|D F|^{2}}+|A C|^{2}-2 \cdot|A C|^{2} \cdot \frac{|D E|}{|D F|} \cdot \cos (\angle E D F) \\
= & \frac{|A C|^{2}}{|D F|^{2}} \cdot\left[|D E|^{2}+|D F|^{2}-2 \cdot|D E| \cdot|D F| \cdot \cos (\angle E D F)\right] \\
= & \frac{|A C|^{2}}{|D F|^{2}} \cdot|E F|^{2} \quad \quad \quad \text { (By the Law of Cosines.) }
\end{aligned}
$$

It follows that $\frac{|B C|^{2}}{|E F|^{2}}=\frac{|A C|^{2}}{|D F|^{2}}$; taking the square roots of both sides gives $\frac{|A C|}{|D F|}=\frac{|B C|}{|E F|}$.
Thus $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}=\frac{|B C|}{|E F|}$, so $\triangle A B C \sim \triangle D E F$ by definition.
2. State and prove a Side-Side-Side (SSS) criterion for similarity. [2]

Solution. Trick question! The obvious Side-Side-Side (SSS) criterion for similarity is to require that $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$. This is our definition of similarity for triangles, so there isn't really anything to prove ...
3. If $\triangle A B C \sim \triangle D E F$, then $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=$ $\angle F D E$. [4]
Note: That is, show that in similar triangles corresponding angles are equal.
Solution. $\triangle A B C \sim \triangle D E F$, so $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$ by definition. Note that with a little algebra it follows that $\frac{|A B|}{|B C|}=\frac{|D E|}{|E F|}, \frac{|A C|}{|B C|}=\frac{|D F|}{|E F|}$, and $\frac{|A B|}{|A C|}=\frac{|D E|}{|D F|}$. Rearranging the Law of Cosines to solve for the angle and exploiting the relationships just obtained gives:

$$
\begin{aligned}
\cos (\angle A B C) & =\frac{|A C|^{2}-|A B|^{2}-|B C|^{2}}{2 \cdot|A B| \cdot|B C|}=\frac{1}{2}\left(\frac{|A C|}{|A B|} \cdot \frac{|A C|}{|B C|}-\frac{|A B|}{|B C|}-\frac{|B C|}{|A B|}\right) \\
& =\frac{1}{2}\left(\frac{|D F|}{|D E|} \cdot \frac{|D F|}{|E F|}-\frac{|D E|}{|E F|}-\frac{|E F|}{|D E|}\right)=\frac{|D F|^{2}-|D E|^{2}-|E F|^{2}}{2 \cdot|D E| \cdot|E F|} \\
& =\cos (\angle D E F)
\end{aligned}
$$

Since cos is a $1-1$ function for angles between 0 and a straight angle - which the internal angles of a triangle must be (Why?) - it follows that $\angle A B C=\angle D E F$.

Similar calculations will show that $\angle B C A=\angle E F D$ and $\angle C A B=\angle F D E$.
\square. This is unquestionably a non-question! [0]
Non-solution. What else for a non-question?

