Mathematics 2260H – Geometry I: Euclidean geometry TRENT UNIVERSITY, Winter 2013

Solutions to Assignment #5 Triggy business with similarity

Recall from the previous assignment that $\triangle ABC$ and $\triangle DEF$ are *similar*, denoted by $\triangle ABC \sim \triangle DEF$, if the ratios of the lengths of corresponding sides are all the same, that is, if $\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|AC|}{|DF|}$.

Two handy facts about triangles, if one has trigonometry in hand, are:

The LAW OF SINES: In any triangle $\triangle ABC$,

$$\frac{\sin\left(\angle BAC\right)}{|BC|} = \frac{\sin\left(\angle ACB\right)}{|AB|} = \frac{\sin\left(\angle ABC\right)}{|AC|}$$

.

and

The LAW OF COSINES: In any triangle $\triangle ABC$,

$$|AC|^{2} = |AB|^{2} + |BC|^{2} - 2 \cdot |AB| \cdot |BC| \cdot \cos(\angle ABC)$$

You may use these laws, and whatever else you know or learn about the trigonometric functions, to help do the following problems.

1. Show that if
$$\angle BAC = \angle EDF$$
 and $\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|}$, then $\triangle ABC \sim \triangle DEF$. [4]

NOTE: That is, show that a Side-Angle-Side (SAS) similarity criterion for triangles works. SOLUTION. We will use the Law of Cosines twice to help:

$$\begin{split} |BC|^2 &= |AB|^2 + |AC|^2 - 2 \cdot |AB| \cdot |AC| \cdot \cos\left(\angle ABC\right) \\ &\quad \text{(By the Law of Cosines.)} \\ &= \left[|AC| \cdot \frac{|DE|}{|DF|} \right]^2 + |AC|^2 - 2 \cdot \left[|AC| \cdot \frac{|DE|}{|DF|} \right] \cdot |AC| \cdot \cos\left(\angle EDF\right) \\ &\quad \text{(Since } \frac{|AB|}{|DE|} = \frac{|AC|}{|DF|} \Longrightarrow |AB| = |AC| \cdot \frac{|DE|}{|DF|} \text{ and } \angle BAC = \angle EDF.) \\ &= |AC|^2 \cdot \frac{|DE|^2}{|DF|^2} + |AC|^2 - 2 \cdot |AC|^2 \cdot \frac{|DE|}{|DF|} \cdot \cos\left(\angle EDF\right) \\ &= \frac{|AC|^2}{|DF|^2} \cdot \left[|DE|^2 + |DF|^2 - 2 \cdot |DE| \cdot |DF| \cdot \cos\left(\angle EDF\right) \right] \\ &= \frac{|AC|^2}{|DF|^2} \cdot |EF|^2 \qquad \text{(By the Law of Cosines.)} \end{split}$$

It follows that $\frac{|BC|^2}{|EF|^2} = \frac{|AC|^2}{|DF|^2}$; taking the square roots of both sides gives $\frac{|AC|}{|DF|} = \frac{|BC|}{|EF|}$. Thus $\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|} = \frac{|BC|}{|EF|}$, so $\triangle ABC \sim \triangle DEF$ by definition.

2. State and prove a Side-Side-Side (SSS) criterion for similarity. [2]

SOLUTION. Trick question! The obvious Side-Side-Side (SSS) criterion for similarity is to require that $\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|AC|}{|DF|}$. This is our *definition* of similarity for triangles, so there isn't really anything to prove ...

3. If $\triangle ABC \sim \triangle DEF$, then $\angle ABC = \angle DEF$, $\angle BCA = \angle EFD$, and $\angle CAB = \angle FDE$. [4]

NOTE: That is, show that in similar triangles corresponding angles are equal.

SOLUTION. $\triangle ABC \sim \triangle DEF$, so $\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|AC|}{|DF|}$ by definition. Note that with a little algebra it follows that $\frac{|AB|}{|BC|} = \frac{|DE|}{|EF|}$, $\frac{|AC|}{|BC|} = \frac{|DF|}{|EF|}$, and $\frac{|AB|}{|AC|} = \frac{|DE|}{|DF|}$. Rearranging the Law of Cosines to solve for the angle and exploiting the relationships just obtained gives:

$$\cos(\angle ABC) = \frac{|AC|^2 - |AB|^2 - |BC|^2}{2 \cdot |AB| \cdot |BC|} = \frac{1}{2} \left(\frac{|AC|}{|AB|} \cdot \frac{|AC|}{|BC|} - \frac{|AB|}{|BC|} - \frac{|BC|}{|AB|} \right)$$
$$= \frac{1}{2} \left(\frac{|DF|}{|DE|} \cdot \frac{|DF|}{|EF|} - \frac{|DE|}{|EF|} - \frac{|EF|}{|DE|} \right) = \frac{|DF|^2 - |DE|^2 - |EF|^2}{2 \cdot |DE| \cdot |EF|}$$
$$= \cos(\angle DEF)$$

Since cos is a 1-1 function for angles between 0 and a straight angle – which the internal angles of a triangle must be (Why?) – it follows that $\angle ABC = \angle DEF$.

Similar calculations will show that $\angle BCA = \angle EFD$ and $\angle CAB = \angle FDE$.

 \Box . This is unquestionably a non-question! [0]

NON-SOLUTION. What else for a non-question? $\mathbf{\nabla}$