Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013

Solutions on Assignment \#4 Congruence and Similarity

1. Show that if $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $|C A|=|F D|$, then $\triangle A B C \cong$ $\triangle D E F$. [5]
Note: That is, show that the Angle-Angle-Side (AAS) congruence criterion for triangles works.

Solution. Suppose $\triangle A B C$ and $\triangle D E F$ have $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $|C A|=|F D|$. Apply $\triangle A B C$ to $\triangle D E F$ so that A is on $D, A C$ lies along $D F$, and B is on the same side of $D F$ as E.

Since A is on $D, A C$ lies along $D F$, and $|A C|=|D F|$, it follows that C is on F. Also, because $\angle B C A=\angle E F D$, it also follows that $A B$ lies along $D E$. There are now appear three possibilities:
i. B is on E. In this case, all three vertices of $\triangle A B C$ are on the corresponding vertices of $\triangle D E F$, so $\triangle A B C \cong \triangle D E F$, as desired.
ii. B is on $D E$ strictly between D and E. In this case, $\angle A B C=\angle D B F$ is an exterior angle and $\angle B E F=\angle D E F$ is an opposite interior angle of $\triangle B E F$. It follows that $\angle A B C>\angle D E F$, contradictiong the given fact that $\angle A B C=\angle D E F$.
iii. B is on $D E$ beyond E. In this case, $\angle D E F$ is an exterior angle and $\angle D B F=$ $\angle A B C$ is an opposite interior angle of $\triangle B E F$. It follows that $\angle A B C<\angle D E F$, contradictiong the given fact that $\angle A B C=\angle D E F$.
Thus both cases $i i$ and $i i i$ lead to a contradiction, leaving case i, in which the desired conclusion holds, as the only possibility.

DEFinition. $\triangle A B C$ and $\triangle D E F$ are similar, often denoted by $\triangle A B C \sim \triangle D E F$, if the ratios of (the lengths of) corresponding sides are all the same, i.e. if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$.
2. Show that congruence implies similarity for triangles, i.e. $\triangle A B C \cong \triangle D E F$ implies that $\triangle A B C \sim \triangle D E F$. Give an example to show that the converse is not necessarily true. [1]
Solution. If $\triangle A B C \cong \triangle D E F$, then $|A B|=|D E|,|B C|=|E F|$, and $|A C|=|D F|$, so $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}=1$. Thus $\triangle A B C \sim \triangle D E F$.
3. Use trigonometry to show that if $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$, then $\triangle A B C \sim \triangle D E F$.

Note: That is, show that the Angle-Angle (AA) criterion for similarity works. Besides trigonometry, you may assume - as trigonometry in Euclidean space does - that the sum of the interior angles of a triangle is $180^{\circ}=\pi \mathrm{rad}=$ a straight angle.

We will revisit the definition and basics of similarity once we start using the parallel axiom (which similarity really needs), but introducing the concept now will allow us to investigate some uses of it before that.

Solution. Suppose $\triangle A B C$ and $\triangle D E F$ with $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$ are given. Let P and Q be the points on $B C$ and $E F$, respectively, where the altitudes from A and D, respectively, meet the opposite side of the triangle. (So $A P \perp B C$ and $D Q \perp E F$.)

$\triangle A B P, \triangle A C P, \triangle D E Q$, and $\triangle D F Q$ are all right triangles. From the properties of the basic trigonometric functions and what we are given about the angles of the triangles it now follows that

$$
\begin{aligned}
\frac{|P B|}{|A B|}=\cos (\angle A B C)=\cos (\angle D E F)=\frac{|Q E|}{|D E|} & \Longrightarrow \frac{|A B|}{|D E|}=\frac{|P B|}{|Q E|}, \\
\frac{|P C|}{|A C|}=\cos (\angle B C A)=\cos (\angle E F D)=\frac{|Q F|}{|D F|} & \Longrightarrow \frac{|A C|}{|D F|}=\frac{|P C|}{|Q F|}, \\
\frac{|A P|}{|A B|}=\sin (\angle A B C)=\sin (\angle D E F)=\frac{|D Q|}{|D E|} & \Longrightarrow \frac{|A B|}{|D E|}=\frac{|A P|}{|D Q|}, \\
\text { and } \frac{|A P|}{|A C|}=\sin (\angle B C A)=\sin (\angle E F D)=\frac{|D Q|}{|D F|} & \Longrightarrow \frac{|A C|}{|D F|}=\frac{|A P|}{|D Q|},
\end{aligned}
$$

Thus

$$
\frac{|A P|}{|D Q|}=\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}=\frac{|P B|}{|Q E|}=\frac{|P C|}{|Q F|}
$$

From $\frac{|P B|}{|Q E|}=\frac{|P C|}{|Q F|}$ it follows that $\frac{|P B|}{|Q E|}=\frac{|P C|}{|Q F|}=\frac{|P B|+|P C|}{|Q E|+|Q F|}=\frac{|B C|}{|E F|}-$ you figure out why! - and thus we have

$$
\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}=\frac{|B C|}{|E F|},
$$

so $\triangle A B C \sim \triangle D E F$, as desired.

