Mathematics $2260 H$ - Geometry I: Euclidean geometry
 Trent University, Winter 2013

Solution to Assignment \#2 Six sides, no waiting ...

A regular hexagon is a convex polygon with six sides, each of which is a straight line, of the same length, such that each interior angle (where two sides meet) is equal to every other interior angle of the polygon.

1. Given a straight line, use Postulates I-IV, S (Separation), and/or A (Application), to show there is a regular hexagon with the given straight line as one of its sides. [3]
Note: You may take Euclid's Proposition I-1 for granted, too.
Solution. Suppose we are given a straight line $A B$. we will construct a regular heaxagon on $A B$ as follows:
2. Use Proposition I-1 to construct an equilateral triangle $\triangle A B O$ on $A B$.
3. Use Proposition I-1 to construct an equilateral triangle $\triangle O B C$ on $O B$.
4. Use Proposition I-1 to construct an equilateral triangle $\triangle O C D$ on $O C$.
5. Use Proposition I-1 to construct an equilateral triangle $\triangle O D E$ on $O D$.
6. Use Proposition I-1 to construct an equilateral triangle $\triangle O E F$ on $O E$.
7. Draw the line segment $F A$ using Postulate I.

We need to verify that the hexagon $A B C D E F$ is indeed regular.
The equilateral triangles constructed in steps 1-5 above all have the same side length, namely $|A B|$: at each step we used $A B$ or the side of an equilateral triangle of side length $|A B|$ to construct the next equilateral triangle. It follows that $|A B|=|B C|=|C D|=$ $|D E|=|E F|$,

Since the five equilateral triangles constructed in steps $1-5$ above all have the same side length for all three sides, they are all congruent by the Side-Side-Side (SSS) congruence criterion. It follows that all of their interior angles are equal, and so $\angle A B C=\angle B C D=$ $\angle C D E=\angle D E F$, since each of these interior angles of the hexagon is the sum of two interior angles of adjacent equlateral triangles.

It still remains to show that $|F A|=|A B|$ and that $\angle E F A$ and $\angle F A B$ are equal to the other interior angles of the hexagon. It is enough to show, in light of the arguments used in the last two paragraphs, that $\triangle O A F$ is also an equilateral triangle of side length $|A B|$.

We already know from the construction of the various equilateral triangles in steps $1-5$ above that $|A B|=|O A|=|O F|$. Unfortunately, showing that $\angle A O F$ is the same as the interior angles of the known equilateral triangles, so that we could apply the SAS criterion, or showing that $|F A|=|O A|=|O F|$, so that we could use the SSS criterion, takes some work. In fact, it requires the use of the parallel axiom in some form; the assertion that the sum of the interior angles of a triangle is equal to a straight angle is probably the easiest to use here. Details left to the reader!

In light of the above, you might ask yourself if it actually possible to construct a regular hexagon on any given line segment using only Postulates I-IV. [Presumably by some different method ...] Up to five [5] assignment bonus points to anyone who can answer this, with proof, one way or the other, on or before the end of classes this term!

