Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013

Quizzes

Quiz 1. Friday, 18 January, 2013. (10 minutes)

1. Suppose we are given a sphere of radius R and three great circles are drawn on this sphere. What are the possibilities for how many regions these three great circles could subdivide the (surface of the) sphere into? Explain why. [5]
Note: "Regions" are contiguous areas whose borders are pieces of those great circles and which do not have another great circle passing through them. Informally, what the question is really asking is: if we cut an orange through its centre (all the way through the orangle) three times, how many pieces of rind might we have at the end?

Quiz 2. Friday, 25 January, 2013. (10 minutes)

1. Given a line segment $A B$, use Postulates I-IV, A, and/or S to show that there is a circle with centre A whose radius is twice the length of $A B$. [5]

Quiz 3. Friday, 1 February, 2013. (10 minutes)

1. Assume $\triangle A B C$ is equilateral and that D is the mid-point of $B C$. Show that $\angle B A D=$ $\angle C A D$ (so $A D$ is the angle-bisector of $\angle B A C$) and that $\angle A D B$ is a right angle. [5]

Quiz 4. Friday, 8 February, 2013. (10 minutes)

1. Suppose $\triangle A B C$ is isosceles with $|A B|=|A C|$ and D is any point on $B C$ strictly between B and C. Show that $|A D|<|A B|$. [5]

Quiz 5. Friday, 15 February, 2013. (10 minutes)

1. Without using Postulate V (or any equivalent), show that there exists a parallellogram, i.e. a quadrilateral $\square A B C D$ such that $A B \| C D$ and $A D \| B C$. [5]

Quiz 6. Friday, 1 March, 2013. (10 minutes)

1. Suppose three squares, $\square A B C D, \square E F G H$, and $\square I J K L$, are given. Show that there is a square $\square M N O P$ whose area is equal to the sum of the areas of the three given squares. [5]

Quiz 7. Friday, 8 March, 2013. (10 minutes)

1. Suppose two circles intersect at (and only at!) two different points. Show that they do not have the same centre. [5]

Quiz 8. Friday, 15 March, 2013. (10 minutes)

1. Suppose that the extensions of chords $A B$ and $C D$ of a circle intersect in a point P outside the circle. Show that $|P A| \cdot|P B|=|P C| \cdot|P D| \cdot[5]$

Quiz 9. Friday, 22 March, 2013. (12 minutes)

1. Suppose that in $\triangle A B C, P$ is the midpoint of $B C$ and Q and R are points on $A C$ and $A B$, respectively, so that $B Q$ and $C R$ are the angle-bisectors of $\angle A B C$ and $\angle A C B$, respectively. Show that if $A P, B Q$, and $C R$ are concurrent in a point X, then $\triangle A B C$ is isosceles. [5]

Quiz 10. Thursday, 28 March, 2013. (10 minutes)

1. Suppose that the Euler line of $\triangle A B C$ includes the vertex A. Show that the triangle is isosceles. [5]

Quiz 11. Friday, 5 April, 2013. (10 minutes)

1. Suppose the nine-point circle of $\triangle A B C$ is tangent to the side $B C$ of the triangle. Show that $\triangle A B C$ is isosceles. [5]
