Mathematics 2260 H - Geometry I: Euclidean geometry
 Trent University, Winter 2013

 Solutions to the Quizzes

 Solutions to the Quizzes}

Quiz 1. Friday, 18 January, 2013. (10 minutes)

1. Suppose we are given a sphere of radius R and three great circles are drawn on this sphere. What are the possibilities for how many regions these three great circles could subdivide the (surface of the) sphere into? Explain why. [5]
Note: "Regions" are contiguous areas whose borders are pieces of those great circles and which do not have another great circle passing through them. Informally, what the question is really asking is: if we cut an orange through its centre (all the way through the orangle) three times, how many pieces of rind might we have at the end?
Solution. There are two possibilities, six (6) regions and eight (8) regions, depending on whether the three great circles all pass through a common point or not, respectively.

First, recall that two great circles must intersect in exactly two points, which are antipodal (that is, exactly opposite each other on the sphere). It is easy to see that two great circles divide up the sphere into four regions.

Second, if we add a third great circle that passes through one of the points where the first two meet, it also passes through the other point where the first two meet as well. (Why?) It is not hard to see that in this case the new great circle subdivides each of two of the regions made by the first two great circles into two smaller regions. This means we have four of the new, subdivided, regions, plus the two old regions, for a total of six (6) regions.

Finally, if we add a third great circle that does not pass through either point where the first two meet, it subdivides every one of the four regions made by the first two great circles into two smaller regions, for a total of eight (8) regions.

Thar's all, folks!

Quiz 2. Friday, 25 January, 2013. (10 minutes)

1. Given a line segment $A B$, use Postulates I-IV, A, and/or S to show that there is a circle with centre A whose radius is twice the length of $A B$. [5]
Solution. Draw a circle with centre B and radius $B A$ [Postulate III]. Extend $A B$ past B until it meets the circle just drawn at C [Postulates II and S]. Finally, draw a circle with centre A and radius $A C$ [Postulate III].

$|B C|=|A B|$ since both are radii of the first circle [definition of a circle], and hence $|A C|=|A B|+|B C|=2|A B|$, so the second circle is what was asked for.

Quiz 3. Friday, 1 February, 2013. (10 minutes)

1. Assume $\triangle A B C$ is equilateral and that D is the mid-point of $B C$. Show that $\angle B A D=$ $\angle C A D$ (so $A D$ is the angle-bisector of $\angle B A C$) and that $\angle A D B$ is a right angle. [5]
Solution. We have $|A B|=|A C|$ since $\triangle A B C$ is equilateral, $|A D|=|A D|$ since any thing is equal to itself, and $|B D|=|C D|$ because we are given that D is the mid-point of $B C$. It follows by the Side-Side-Side (SSS) congruence criterion that $\triangle B A D \cong \triangle C A D$.

Since $\triangle B A D \cong \triangle C A D, \angle B A D=\angle C A D$ and $\angle A D B=\angle C D B$. Since $\angle A D B+$ $\angle C D B=\angle B D C=$ a straight angle, it follows that $\angle A D B$ (and $\angle C D B$ too!) is a straight angle.

Quiz 4. Friday, 8 February, 2013. (10 minutes)

1. Suppose $\triangle A B C$ is isosceles with $|A B|=|A C|$ and D is any point on $B C$ strictly between B and C. Show that $|A D|<|A B|$. [5]

Solution. Since $\triangle A B C$ is isosceles with $|A B|=|A C|, \angle A B C=\angle A C B[\mathrm{I}-5]$. Observe that $\angle A D B$ is an exterior angle of $\triangle A C D$, so it is greater than the opposite interior angle $\angle A C D=\angle A C B=\angle A B C[\mathrm{I}-16]$, i.e. $\angle A D B>\angle A B C=\angle A B D$. Since the greater angle subtends the longer side in $\triangle A D B[\mathrm{I}-19]$, it follows that $|A B|>|A D|$, as desired.

Quiz 5. Friday, 15 February, 2013. (10 minutes)

1. Without using Postulate V (or any equivalent), show that there exists a parallellogram, i.e. a quadrilateral $\square A B C D$ such that $A B \| C D$ and $A D \| B C$. [5]

Solution. Let $A B$ be any line segment. Using Proposition I-1, we can find a point C such that $\triangle A B C$ is equilateral; using proposition I-1 again, we can find another point D, on the opposite side of $A C$ from B, such that $\triangle A C D$ is equilateral too.

Note that since $\triangle A B C$ is equilateral, $|A B|=|B C|=|A C|$, and since $\triangle A C D$ is equilateral, $|A C|=|C D|=|A D|$. Since the two triangles have side $A C$ in common, it follows that $|A B|=|B C|=|A C|=|C D|=|A D|$, so $\triangle A B C \cong \triangle C D A$. In turn, this means that $\angle A C B=\angle C A D$, so, by Proposition I-27 - which does not require Postulate $\mathrm{V}, A D \| B C$. Similarly, $\angle B A C=\angle D C A$, so, by Proposition I-27, $A B \| C D$. Thus $\square A B C D$ is a parallelogram.

Quiz 6. Friday, 1 March, 2013. (10 minutes)

1. Suppose three squares, $\square A B C D, \square E F G H$, and $\square I J K L$, are given. Show that there is a square $\square M N O P$ whose area is equal to the sum of the areas of the three given squares. [5]
Solution. Draw $Q R$ such that $|Q R|=|A B|$, and draw $Q S$ such that $Q S \perp Q R$ and $|Q S|=|E F|$. Then $\triangle Q R S$ is a right triangle and so, by the Pythagorean Theorem, a square with sides of length $|S R|$ is equal in area to the sum of of the areas of $\square A B C D$ and $\square E F G H$. Such a square can be explicitly constructed - if you really care - on the side $R S$ of $\triangle Q R S$ by Proposition I-46.

Now draw $T U$ such that $|T U|=|S R|$, and draw $T V$ such that $T V \perp T U$ and $|T V|=|I J|$. then $\triangle T U V$ is a right triangle and so, by the Pythagorean Theorem, a square $\square M N O P$ with sides of length $|U V|$ must have area equal to the sum of the areas of $\square A B C D, \square E F G H$, and $\square I J K L$. Such a square can be explicitly constructed - if you really care - on the side $U V$ of $\triangle T U V$ by Proposition I-46.

Quiz 7. Friday, 8 March, 2013. (10 minutes)

1. Suppose two circles intersect at (and only at!) two different points. Show that they do not have the same centre. [5]
Solution. This problem is actually a slight restatement of Proposition III-5 in Euclid's Elements. Here is Euclid's proof:

For let the two circles $A B C$ and $C D G$ cut one another at points B and C. I say that they will not have the same center.

For, if possible, let E be (the common center), and let $E C$ have been joined, and let $E F G$ have been drawn through (the two circles), at random. And since point E is the center of the circle $A B C, E C$ is equal to $E F$. Again, since point E is the center of the circle $C D G, E C$ is equal to $E G$. But $E C$ was also shown (to be) equal to $E F$. Thus, $E F$ is also equal to $E G$, the lesser to the greater. The very thing is impossible. Thus, point E is not the (common) center of the circles $A B C$ and $C D G$.

Thus, if two circles cut one another then they will not have the same center. (Which is) the very thing it was required to show.

Quiz 8. Friday, 15 March, 2013. (10 minutes)

1. Suppose that the extensions of chords $A B$ and $C D$ of a circle intersect in a point P outside the circle. Show that $|P A| \cdot|P B|=|P C| \cdot|P D| \cdot[5]$

Solution. This problem is actually a slight restatement of Proposition III-35 in Euclid's Elements. Since we proved Propositions III-36 and 37 in class without reference to III-35, we can use them to give a proof of III-35 that is different from Euclid's:

Draw a line $P T$ such that $P T$ is tangent to the circle at T. By III-36 and 37, $|P A| \cdot|P B|=|P T|^{2}$ and $|P C| \cdot|P D|=|P T|^{2}$, and so $|P A| \cdot|P B|=|P C| \cdot|P D|$.

Quiz 9. Friday, 22 March, 2013. (12 minutes)

1. Suppose that in $\triangle A B C, P$ is the midpoint of $B C$ and Q and R are points on $A C$ and $A B$, respectively, so that $B Q$ and $C R$ are the angle-bisectors of $\angle A B C$ and $\angle A C B$, respectively. Show that if $A P, B Q$, and $C R$ are concurrent in a point X, then $\triangle A B C$ is isosceles. [5]
Solution. Since X is the intersection of two of the internal angle bisectors of $\triangle A B C$, it is actually the incentre of the triangle, i.e. $X=I$. Since all three angle bisectors meet at the incentre, this means that the line joining $X=I$ to A, the median $A P$, is also the angle bisector of $\angle B A C$. We claim that $A P \perp B C$, i.e. $A P$ is also an altitude.

Assume, by way of contradiction, that $A P$ is not perpendicular to $B C$. Let S and T be points on (extensions of) $A B$ and $A C$, respectively, such that P is on $S T$ and $S T \perp A P$. Since B, P, and C are collinear and $B C$ is not perpendicular to $A P$, it must be the case that either B is between S and A and T is between C and A, or S is between B and A and C is between T and A. Suppose, for the sake of argument, that it is the latter. (The former case works out in the same way.)

Since $\angle S A P=\angle B A P=\angle C A P=\angle T A P$ by hypothesis, $\angle S P A=\angle T P A$ because both are right angles (as $A P \perp S T$), and $|A P|=|A P|$, the Angle-Side-Angle congruence criterion tells us that $\triangle S A P \cong \triangle T A P$. It follows, in particular, that $|S P|=|T P|$ and $\angle A S P=\angle A T P$.

Besides $|S P|=|T P|$, we have $|B P|=|C P|$ because P is the midpoint of $B C$, and $\angle B P S=\angle C P T$ because these are opposite angles, so $\triangle B P S \cong \triangle C P S$ by the Side-Angle-Side congruence criterion. It follows that $\angle P B S=\angle P C T$ and $\angle B S P=\angle P T C$.

Thus $\angle B S P=\angle P T C=\angle A T P=\angle A S P$, so, because $\angle B S P+\angle A S P$ makes a straight angle, we have that $\angle B S P$ and $\angle A S P$ are right angles. This is impossible because it would give $\triangle A S P$ two internal angles that are right, and hence a sum of internal angles exceeding a straight angle.

Hence, by contradiction, it must be the case that $A P \perp B C$. Since $\angle B A P=\angle C A P$ (recall that $A P$ is also the angle bisector of $\angle B A C$), $\angle A P B=\angle A P C$ (because $A P \perp$ $B C)$, and $|A P|=|A P|$, the Angle-Side-Angle congruence criterion tells us that $\triangle B A P \cong$ $\triangle C A P$. It follows, in particular, that $|A B|=|A C|$, so the triangle is isosceles.

Note: I hallucinated a short, sweet, argument when I made up the quiz ... Sorry!

Quiz 10. Thursday, 28 March, 2013. (10 minutes)

1. Suppose that the Euler line of $\triangle A B C$ includes the vertex A. Show that the triangle is isosceles. [5]
Solution. The line joining vertex A to the orthocentre H is the altitude of the triangle from A, and the line joining A to the centroid is the median from A. By definition, the Euler line includes both the orthocentre H and centroid G of $\triangle A B C$. If it also includes the vertex A, then the Euler line must be both the altitude and the median of the triangle from A. Hence, if P is the point where this line meets $B C$, then $\angle A P B=\angle A P C$ are right angles and $|B P|=|C P|$. Since $|A P|=|A P|$ no matter what, it follows by the Side-Angle-Side congruence criterion that $\triangle A P B \cong \triangle A P C$. This, in turn, implies that $|A B|=|A C|$, so $\triangle A B C$ is isosceles.

Quiz 11. Friday, 5 April, 2013. (10 minutes)

1. Suppose the nine-point circle of $\triangle A B C$ is tangent to the side $B C$ of the triangle. Show that $\triangle A B C$ is isosceles. [5]
Solution. The nine-point circle of $\triangle A B C$ normally passes through two points of $B C$: the midpoint of the side and the foot of the altitude from A. If the circle is tangent to $B C$, these two must be the same point, call it P, so $A P$ is both the median from A and the altitude from A. Then $|A P|=|A P|, \angle A P B=\angle A P C=$ a right angle (because $A P \perp B C$), and $|B P|=|C P|$ (because P is the midpoint of $B C$), so we have $\triangle A P B \cong \triangle A P C$ by the Side-Angle-Side congruence criterion. Thus $|A B|=|A C|$, so $\triangle A B C$ is isosceles.
