
Mathematics 2260H – Geometry I: Euclidean geometry
Trent University, Winter 2013

Solutions to the Quizzes

Quiz 1. Friday, 18 January, 2013. (10 minutes)
1. Suppose we are given a sphere of radius R and three great circles are drawn on this

sphere. What are the possibilities for how many regions these three great circles could
subdivide the (surface of the) sphere into? Explain why. [5]

Note: “Regions” are contiguous areas whose borders are pieces of those great circles
and which do not have another great circle passing through them. Informally, what the
question is really asking is: if we cut an orange through its centre (all the way through the
orangle) three times, how many pieces of rind might we have at the end?

Solution. There are two possibilities, six (6) regions and eight (8) regions, depending on
whether the three great circles all pass through a common point or not, respectively.

First, recall that two great circles must intersect in exactly two points, which are
antipodal (that is, exactly opposite each other on the sphere). It is easy to see that two
great circles divide up the sphere into four regions.

Second, if we add a third great circle that passes through one of the points where
the first two meet, it also passes through the other point where the first two meet as well.
(Why?) It is not hard to see that in this case the new great circle subdivides each of two
of the regions made by the first two great circles into two smaller regions. This means we
have four of the new, subdivided, regions, plus the two old regions, for a total of six (6)
regions.

Finally, if we add a third great circle that does not pass through either point where
the first two meet, it subdivides every one of the four regions made by the first two great
circles into two smaller regions, for a total of eight (8) regions.

Thar’s all, folks! �
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Quiz 2. Friday, 25 January, 2013. (10 minutes)
1. Given a line segment AB, use Postulates I–IV, A, and/or S to show that there is a

circle with centre A whose radius is twice the length of AB. [5]

Solution. Draw a circle with centre B and radius BA [Postulate III]. Extend AB past B
until it meets the circle just drawn at C [Postulates II and S]. Finally, draw a circle with
centre A and radius AC [Postulate III].

|BC| = |AB| since both are radii of the first circle [definition of a circle], and hence
|AC| = |AB|+ |BC| = 2|AB|, so the second circle is what was asked for. �

Quiz 3. Friday, 1 February, 2013. (10 minutes)
1. Assume4ABC is equilateral and that D is the mid-point of BC. Show that ∠BAD =
∠CAD (so AD is the angle-bisector of ∠BAC) and that ∠ADB is a right angle. [5]

Solution. We have |AB| = |AC| since 4ABC is equilateral, |AD| = |AD| since any
thing is equal to itself, and |BD| = |CD| because we are given that D is the mid-point of
BC. It follows by the Side-Side-Side (SSS) congruence criterion that 4BAD ∼= 4CAD.

Since 4BAD ∼= 4CAD, ∠BAD = ∠CAD and ∠ADB = ∠CDB. Since ∠ADB +
∠CDB = ∠BDC = a straight angle, it follows that ∠ADB (and ∠CDB too!) is a straight
angle. �

Quiz 4. Friday, 8 February, 2013. (10 minutes)
1. Suppose 4ABC is isosceles with |AB| = |AC| and D is any point on

BC strictly between B and C. Show that |AD| < |AB|. [5]

Solution. Since 4ABC is isosceles with |AB| = |AC|, ∠ABC = ∠ACB [I-5]. Observe
that ∠ADB is an exterior angle of 4ACD, so it is greater than the opposite interior angle
∠ACD = ∠ACB = ∠ABC [I-16], i.e. ∠ADB > ∠ABC = ∠ABD. Since the greater
angle subtends the longer side in 4ADB [I-19], it follows that |AB| > |AD|, as desired. �
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Quiz 5. Friday, 15 February, 2013. (10 minutes)
1. Without using Postulate V (or any equivalent), show that there exists a parallellogram,

i.e. a quadrilateral �ABCD such that AB ‖ CD and AD ‖ BC. [5]

Solution. Let AB be any line segment. Using Proposition I-1, we can find a point C
such that 4ABC is equilateral; using proposition I-1 again, we can find another point D,
on the opposite side of AC from B, such that 4ACD is equilateral too.

Note that since 4ABC is equilateral, |AB| = |BC| = |AC|, and since 4ACD is
equilateral, |AC| = |CD| = |AD|. Since the two triangles have side AC in common, it
follows that |AB| = |BC| = |AC| = |CD| = |AD|, so 4ABC ∼= 4CDA. In turn, this
means that ∠ACB = ∠CAD, so, by Proposition I-27 – which does not require Postulate
V, AD ‖ BC. Similarly, ∠BAC = ∠DCA, so, by Proposition I-27, AB ‖ CD. Thus
�ABCD is a parallelogram. �

Quiz 6. Friday, 1 March, 2013. (10 minutes)
1. Suppose three squares, �ABCD, �EFGH, and �IJKL, are given. Show that there

is a square �MNOP whose area is equal to the sum of the areas of the three given
squares. [5]

Solution. Draw QR such that |QR| = |AB|, and draw QS such that QS ⊥ QR and
|QS| = |EF |. Then 4QRS is a right triangle and so, by the Pythagorean Theorem, a
square with sides of length |SR| is equal in area to the sum of of the areas of �ABCD
and �EFGH. Such a square can be explicitly constructed – if you really care – on the
side RS of 4QRS by Proposition I-46.

Now draw TU such that |TU | = |SR|, and draw TV such that TV ⊥ TU and
|TV | = |IJ |. then 4TUV is a right triangle and so, by the Pythagorean Theorem, a
square �MNOP with sides of length |UV | must have area equal to the sum of the areas
of �ABCD, �EFGH, and �IJKL. Such a square can be explicitly constructed – if you
really care – on the side UV of 4TUV by Proposition I-46. �
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Quiz 7. Friday, 8 March, 2013. (10 minutes)
1. Suppose two circles intersect at (and only at!) two different points. Show that they

do not have the same centre. [5]

Solution. This problem is actually a slight restatement of Proposition III-5 in Euclid’s
Elements. Here is Euclid’s proof:

For let the two circles ABC and CDG cut one another at points B and C.
I say that they will not have the same center.

For, if possible, let E be (the common center), and let EC have been joined,
and let EFG have been drawn through (the two circles), at random. And since
point E is the center of the circle ABC, EC is equal to EF . Again, since point
E is the center of the circle CDG, EC is equal to EG. But EC was also shown
(to be) equal to EF . Thus, EF is also equal to EG, the lesser to the greater.
The very thing is impossible. Thus, point E is not the (common) center of the
circles ABC and CDG.

Thus, if two circles cut one another then they will not have the same center.
(Which is) the very thing it was required to show. �

Quiz 8. Friday, 15 March, 2013. (10 minutes)
1. Suppose that the extensions of chords AB and CD of a circle

intersect in a point P outside the circle. Show that
|PA| · |PB| = |PC| · |PD|. [5]

Solution. This problem is actually a slight restatement of Proposition III-35 in Euclid’s
Elements. Since we proved Propositions III-36 and 37 in class without reference to III-35,
we can use them to give a proof of III-35 that is different from Euclid’s:

Draw a line PT such that PT is tangent to the circle at T . By III-36 and 37,
|PA| · |PB| = |PT |2 and |PC| · |PD| = |PT |2, and so |PA| · |PB| = |PC| · |PD|. �
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Quiz 9. Friday, 22 March, 2013. (12 minutes)
1. Suppose that in 4ABC, P is the midpoint of BC and Q and R are points on AC and

AB, respectively, so that BQ and CR are the angle-bisectors of ∠ABC and ∠ACB,
respectively. Show that if AP , BQ, and CR are concurrent in a point X, then 4ABC
is isosceles. [5]

Solution. Since X is the intersection of two of the internal angle bisectors of 4ABC,
it is actually the incentre of the triangle, i.e. X = I. Since all three angle bisectors meet
at the incentre, this means that the line joining X = I to A, the median AP , is also the
angle bisector of ∠BAC. We claim that AP ⊥ BC, i.e. AP is also an altitude.

Assume, by way of contradiction, that AP is not perpendicular to BC. Let S and T
be points on (extensions of) AB and AC, respectively, such that P is on ST and ST ⊥ AP .
Since B, P , and C are collinear and BC is not perpendicular to AP , it must be the case
that either B is between S and A and T is between C and A, or S is between B and A
and C is between T and A. Suppose, for the sake of argument, that it is the latter. (The
former case works out in the same way.)

Since ∠SAP = ∠BAP = ∠CAP = ∠TAP by hypothesis, ∠SPA = ∠TPA because
both are right angles (as AP ⊥ ST ), and |AP | = |AP |, the Angle-Side-Angle congruence
criterion tells us that 4SAP ∼= 4TAP . It follows, in particular, that |SP | = |TP | and
∠ASP = ∠ATP .

Besides |SP | = |TP |, we have |BP | = |CP | because P is the midpoint of BC, and
∠BPS = ∠CPT because these are opposite angles, so 4BPS ∼= 4CPS by the Side-
Angle-Side congruence criterion. It follows that ∠PBS = ∠PCT and ∠BSP = ∠PTC.

Thus ∠BSP = ∠PTC = ∠ATP = ∠ASP , so, because ∠BSP + ∠ASP makes a
straight angle, we have that ∠BSP and ∠ASP are right angles. This is impossible because
it would give 4ASP two internal angles that are right, and hence a sum of internal angles
exceeding a straight angle.

Hence, by contradiction, it must be the case that AP ⊥ BC. Since ∠BAP = ∠CAP
(recall that AP is also the angle bisector of ∠BAC), ∠APB = ∠APC (because AP ⊥
BC), and |AP | = |AP |, the Angle-Side-Angle congruence criterion tells us that 4BAP ∼=
4CAP . It follows, in particular, that |AB| = |AC|, so the triangle is isosceles. �

Note: I hallucinated a short, sweet, argument when I made up the quiz . . . Sorry!
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Quiz 10. Thursday, 28 March, 2013. (10 minutes)
1. Suppose that the Euler line of 4ABC includes the vertex A. Show that the triangle

is isosceles. [5]

Solution. The line joining vertex A to the orthocentre H is the altitude of the triangle
from A, and the line joining A to the centroid is the median from A. By definition, the
Euler line includes both the orthocentre H and centroid G of 4ABC. If it also includes
the vertex A, then the Euler line must be both the altitude and the median of the triangle
from A. Hence, if P is the point where this line meets BC, then ∠APB = ∠APC are
right angles and |BP | = |CP |. Since |AP | = |AP | no matter what, it follows by the
Side-Angle-Side congruence criterion that 4APB ∼= 4APC. This, in turn, implies that
|AB| = |AC|, so 4ABC is isosceles. �

Quiz 11. Friday, 5 April, 2013. (10 minutes)
1. Suppose the nine-point circle of 4ABC is tangent to the side BC of the triangle.

Show that 4ABC is isosceles. [5]

Solution. The nine-point circle of4ABC normally passes through two points of BC: the
midpoint of the side and the foot of the altitude from A. If the circle is tangent to BC, these
two must be the same point, call it P , so AP is both the median from A and the altitude
from A. Then |AP | = |AP |, ∠APB = ∠APC = a right angle (because AP ⊥ BC), and
|BP | = |CP | (because P is the midpoint of BC), so we have 4APB ∼= 4APC by the
Side-Angle-Side congruence criterion. Thus |AB| = |AC|, so 4ABC is isosceles. �
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