Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013
 Assignment \#5
 Triggy business with similarity
 Due on Friday, 15 February, 2013.

Recall from the previous assignment that $\triangle A B C$ and $\triangle D E F$ are similar, denoted by $\triangle A B C \sim \triangle D E F$, if the ratios of the lengths of corresponding sides are all the same, that is, if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$.

Two handy facts about triangles, if one has trigonometry in hand, are:
The Law of Sines: In any triangle $\triangle A B C$,

$$
\frac{\sin (\angle B A C)}{|B C|}=\frac{\sin (\angle A C B)}{|A B|}=\frac{\sin (\angle A B C)}{|A C|} .
$$

and
The Law of Cosines: In any triangle $\triangle A B C$,

$$
|A C|^{2}=|A B|^{2}+|B C|^{2}-2 \cdot|A B| \cdot|B C| \cdot \cos (\angle A B C) .
$$

You may use these laws, and whatever else you know or learn about the trigonometric functions, to help do the following problems.

1. Show that if $\angle B A C=\angle E D F$ and $\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F$. [4]

Note: That is, show that a Side-Angle-Side (SAS) similarity criterion for triangles works.
2. State and prove a Side-Side-Side (SSS) criterion for similarity. [2]
3. If $\triangle A B C \sim \triangle D E F$, then $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=$ $\angle F D A$. [4]

Note: That is, show that in similar triangles corresponding angles are equal.
\square. This is unquestionably a non-question! [0]

