Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013
 Assignment \#4
 Congruence and Similarity
 Due on Friday, 8 February, 2013.

1. Show that if $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $|C A|=|F D|$, then $\triangle A B C \cong$ $\triangle D E F$. [5]

Note: That is, show that the Angle-Angle-Side (AAS) congruence criterion for triangles works.

DEFINITION. $\triangle A B C$ and $\triangle D E F$ are similar, often denoted by $\triangle A B C \sim \triangle D E F$, if the ratios of (the lengths of) corresponding sides are all the same, i.e. if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$.
2. Show that congruence implies similarity for triangles, i.e. $\triangle A B C \cong \triangle D E F$ implies that $\triangle A B C \sim \triangle D E F$. Give an example to show that the converse is not necessarily true. [1]
3. Use trigonometry to show that if $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$, then $\triangle A B C \sim \triangle D E F$.

Note: That is, show that the Angle-Angle (AA) criterion for similarity works. Besides trigonometry, you may assume - as trigonometry in Euclidean space does - that the sum of the interior angles of a triangle is $180^{\circ}=\pi \mathrm{rad}=$ a straight angle.

We will revisit the definition and basics of similarity once we start using the parallel axiom (which similarity really needs), but introducing the concept now will allow us to investigate some uses of it before that.

