Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013
 Assignment \#3
 Congruence Criteria
 Due on Friday, 30 January, 2013.

1. Find triangles $\triangle A B C$ and $\triangle D E F$ such that $\angle A B C=\angle D E F,|B C|=|E F|$, and $|C A|=|F D|$, but $\triangle A B C \nsubseteq \triangle D E F$ (i.e. $\triangle A B C$ is not congruent to $\triangle D E F$). [5]

Note: Such an example shows that the Angle-Side-Side (ASS) congruence criterion for triangles does not work.
2. Show that if quadrilaterals $\square A B C D$ and $\square E F G H$ (neither of which has sides crossing except at the vertices) satisfy $|A B|=|E F|, \angle A B C=\angle E F G,|B C|=|F G|, \angle B C D=$ $\angle F G H$, and $|C D|=|G H|$, then $\square A B C D \cong \square E F G H$. [5]
Note: That is, you need to show that the Side-Angle-Side-Angle-Side (SASAS) congruence criterion for quadrilaterals does work.

