Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2013

 Assignment \#10

 Assignment \#10
 Ceva's Theorem returns!
 Due on Monday, 1 April, 2013.

In Assignment \#7 you were asked to prove one direction of a limited verion of Ceva's Theorem. Using the same conventions about the orientation of line segments as in Menelaus' Theorem, the full version of Ceva's Theorem is:

Ceva's Theorem. Suppose D, E, and F are points on (extensions of) the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Then $A D, B E$, and $C F$ all meet in a single point O if and only if $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1$.

1. Prove Ceva's Theorem. [10]

Hint: You may assume what was to be shown in Assignment \#7. There are also ways to prove Ceva's Theorem using Menelaus' Theorem.

