Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2012

Solution to Assignment \#4 Similarity

Euclid's Elements doesn't get into similarity until Book VI, but it's a concept that comes in very handy for some things, a few of which we will hopefully get to cover later. We will therefore start developing it now.

DEFInition. $\triangle A B C$ is similar to $\triangle D E F$, often written as $\triangle A B C \sim \triangle D E F$, if corresponding angles are equal (i.e. $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E)$ and the lengths of corresponding sides are all in the same proportion (i.e. $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$).
For this assignment you may use all of Euclid's Postulates, plus all the trigonometry you know. (Or can look up!) The trigonometry is likely to be easier to use.

1. Prove the Side-Side-Side Similarity Criterion. [3]

$$
\text { If } \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}, \text { then } \triangle A B C \sim \triangle D E F \text {. }
$$

Solution. Let $a=\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$, so $A B=a D E, B C=a E F$, and $A C=a D F$. By the Law of Cosines, we have

$$
\begin{aligned}
& B C^{2}=A B^{2}+A C^{2}-A B \cdot A C \cdot \cos (\angle B A C) \\
& \text { and } \quad E F^{2}=D E^{2}+D F^{2}-D E \cdot D F \cdot \cos (\angle E D F) \text {. }
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\cos (\angle B A C) & =\frac{A B^{2}+A C^{2}-B C^{2}}{A B \cdot A C}=\frac{a^{2} D E^{2}+a^{2} D F^{2}-a^{2} E F^{2}}{a D E \cdot a D F} \\
& =\frac{D E^{2}+D F^{2}-E F^{2}}{D E \cdot D F}=\cos (\angle E D F),
\end{aligned}
$$

and so, because every internal angle of a triangle must be greater than zero but less than a straight angle [Why?] and $\cos (\theta)$ is $1-1$ for $0 \leq \theta \leq \pi$, we get $\angle B A C=\angle E D F$.

Similar calculations give us that $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$, too. Since we were give that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$ to start with, it follows that $\triangle A B C \sim \triangle D E F$ by definition.
2. Prove the Angle-Angle Similarity Criterion. [3]

$$
\text { If } \angle A B C=\angle D E F \text { and } \angle B C A=\angle E F D \text {, then } \triangle A B C \sim \triangle D E F \text {. }
$$

Solution. Since $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$ and the sum of the interior angles of a triangle must equal a straight angle, we must also have $\angle B A C=\angle E D F$. By the Law of Sines, we have

$$
\frac{\sin (\angle A B C)}{A C}=\frac{\sin (\angle B C A)}{A B}=\frac{\sin (\angle C A B)}{B C}
$$

$$
\text { and } \quad \frac{\sin (\angle D E F)}{D F}=\frac{\sin (\angle E F D)}{D E}=\frac{\sin (\angle F D E)}{E F} \text {. }
$$

It follows that, for one thing,

$$
A B=\frac{\sin (\angle B C A)}{\sin (\angle A B C)} A C \quad \text { and } \quad D E=\frac{\sin (\angle E F D)}{\sin (\angle D E F)} D F
$$

so, since $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$,

$$
\frac{A B}{D E}=\frac{\frac{\sin (\angle B C A)}{\sin (\angle A B C)} A C}{\frac{\sin (\angle E F D)}{\sin (\angle D E F)} D F}=\frac{\frac{\sin (\angle B C A)}{\sin (\angle A B C)} A C}{\frac{\sin (\angle B C A)}{\sin (\angle A B C)} D F}=\frac{A C}{D F}
$$

Similar calculations will also show that it also follows that $\frac{A B}{D E}=\frac{B C}{E F}$ and $\frac{A C}{D F}=$ $\frac{B C}{E F}$. Since corresponding angles of $\triangle A B C$ and $\triangle D E F$ are equal and the lengths of corresponding sides are all in the same proportion, $\triangle A B C \sim \triangle D E F$ by definition.

2 3. Prove the Side-Angle-Side Similarity Criterion. [4]

$$
\text { If } \angle A B C=\angle D E F \text { and } \frac{A B}{D E}=\frac{B C}{E F} \text {, then } \triangle A B C \sim \triangle D E F \text {. }
$$

Solution. Let $a=\frac{A B}{D E}=\frac{B C}{E F}$, so $A B=a D E$ and $B C=a E F$. By the Law of Cosines, we have

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-A B \cdot B C \cdot \cos (\angle A B C) \\
& =a^{2} D E^{2}+a^{2} E F^{2}-a D E \cdot a E F \cdot \cos (\angle D E F) \\
& =a^{2}\left(D E^{2}+E F^{2}-D E \cdot E F \cdot \cos (\angle D E F)\right) \\
& =a^{2} D F^{2},
\end{aligned}
$$

so $A C=a D F$ and $\frac{A B}{D E}=\frac{B C}{E F}=a=\frac{A C}{D F}$. It follows by the Side-Side-Side Similarity Criterion (see question 1) that $\triangle A B C \sim \triangle D E F$.

