Mathematics $2260 H$ - Geometry I: Euclidean geometry

Trent University, Winter 2012

Solution to Assignment \#3

Angle-Angle-Side!

1. Show that the Angle-Angle-Side congruence criterion actually works. That is, show that if $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $C A=F D$, then $\triangle A B C \cong \triangle D E F$. [10]

Solution. Apply $\triangle A B C$ to $\triangle D E F$ so that A is on $D, A C$ is along $D F$, and B and E are on the same side of $D F$. Since $A C=D F$, it follows that C is on F as well. Since $\angle B C A=\angle E F D$, it then follows that $B C$ is along $E F$.

We claim that B must be on E as well. Suppose, by way of contradiction that B falls strictly between E and F. Then $\angle D E B+\angle D B E=\angle D E F+\angle D B E=\angle A B C+\angle A B E$ amounts to a straight angle, contradicting the fact (Euclid's Propositiom I-17) that any two internal angles of a triangle sum to less than a straight angle. A similar argument by contradiction show that E cannot fall strictly between B and F either. It follows that B must be on E.

Since the triangles coincide when one is applied to the other, they must be congruent. (Feel free to use your favourite congruence criterion, or just satisfy the definition of congruence...)

